
REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

19-02-2004
2. REPORT TYPE

Final Report
3. DATES COVERED (From – To)

01-Dec-00 - 19-Feb-04
5a. CONTRACT NUMBER

ISTC Registration No: 1994p

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Formal Methods for Information Protection Technology
Task 2: Mathematical Foundations, Architecture and
Principles of Implementation of Multi-Agent Learning
Components for Attack Detection in Computer Networks
Part II

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5d. TASK NUMBER

6. AUTHOR(S)

Professor I.V. Kotenko Ph.D.

5e. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
St. Petersburg Institute For Informatics & Automation of the Russian Academy of
Sciences
39, 14th Liniya
St. Petersburg 199178
Russia

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

10. SPONSOR/MONITOR’S ACRONYM(S)9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

EOARD
PSC 802 BOX 14
FPO 09499-0014 11. SPONSOR/MONITOR’S REPORT NUMBER(S)

ISTC 00-7035

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited. (approval given by local Public Affairs Office)

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The use of open computer networks as an environment for exchange of information across the globe in distributed applications requires improved
security measures on the network, in particular, to information resources used in applications. Integrity, confidentiality and availability of the network
resources must be assured. To detect and suppress different types of computer unauthorized intrusions, modern network security systems (NSS) must
be armed with various protection means and be able to accumulate experience in order to increase its ability to front against known types of intrusions,
and to learn new types of intrusions. The project will perform three main tasks.
1. Develop a mathematical model and a tool that simulates various coordinated intrusion scenarios against computer networks;
2. Develop the mathematical foundations, architecture, and principles of implementation of autonomous-software-tool technology implementing the
learning system for intrusion detection;
3. Develop the fundamentals, architecture and software for the computer security system based on multi-level encoding for information protection in
mass application.
To detect and suppress different types of computer intrusions, modern NSS must be able to accumulate experience in order to increase its ability to front
against known type of attacks/intrusions and to learn unknown simple and complex, local and distributed types of attacks. This requires the use of a
powerful intelligent learning subsystem (LS) in NSS. That is why the second task of the project concerns to the development of the formal model,
architecture, and software prototype of the autonomous intelligent learning system for detection of the attacks/intrusions against computer network.

15. SUBJECT TERMS
EOARD, Mathematical & Computer Sciences, Computer Systems

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
/Signed/PAUL LOSIEWICZ, Ph. D.a. REPORT

UNCLAS
b. ABSTRACT

UNCLAS
c. THIS PAGE

UNCLAS

17. LIMITATION OF
ABSTRACT

UL

18, NUMBER
OF PAGES

19b. TELEPHONE NUMBER (Include area code)
+44 20 7514 4474

 Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39-18

EUROPEAN OFFICE OF AEROSPACE
RESEARCH AND DEVELOPMENT

(EOARD)

St. Petersburg
November 2003

ST. PETERSBURG INSTITUTE
FOR INFORMATICS AND

AUTOMATION

SPIIRAS

Project #1994 P
Formal Methods for Information Protection Technology

Principal Investigator of Task 2
Leading Researcher of the Intelligent

Systems Laboratory of SPIIRAS
Ph.D. Professor I.V. Kotenko

Part II

Final Report
 Task 2: Mathematical Foundations, Architecture and

Principles of Implementation of Multi-Agent Learning
Components for Attack Detection in Computer Networks

 1

EUROPEAN OFFICE OF AEROSPACE
RESEARCH AND DEVELOPMENT

(EOARD)

ST. PETERSBURG INSTITUTE
FOR INFORMATICS AND

AUTOMATION

St. Petersburg
November 2003

Project # 1994P
Task 2: Mathematical Foundations, Architecture and Principles

of Implementation of Multi-Agent Learning Components
for Attack Detection in Computer Networks

Final Report

SPIIRAS

Principal Investigator of Task 2
Leading Researcher of the Intelligent
Systems Laboratory of SPIIRAS
Ph.D. Professor I.V. Kotenko

Part II

 2

Contents

Preface 4
Report summary 6
Table of Abbreviations used in the Report 9
Chapter 1. Peculiarities of Intrusion Detection Learning Task. Methodology and Models of

Intrusion Detection Learning 10
1.1. Introduction 10
1.2. Main Concepts of Logging and Auditing of Events in Computer Networks.

Representation of Audit Data at Various Generalization Levels 15
1.3. The IDLS Data Sources Taxonomies 19
1.4. Features of Audit Data used for Knowledge-based Attack Detection 21
1.5. Basic Data Structures and Measurement Scales used for Data Representation.

Dimensionality and Size of the IDL Training and Testing data 25
1.6. Design Principles and Methodology used in IDLS and IDS 25
1.7. Methodology of Multi-Agent Intrusion Detection Learning 27

1.7.1. Basic Principles of Data and Information Fusion 28
1.7.2. Decision Fusion Meta-model 29
1.7.3. Structure of IDS Distributed Knowledge Base 29
1.7.4. Data Mining and Knowledge Discovery Techniques used for Engineering of

Distributed Knowledge Bases and Decision Making Mechanisms of IDS 31
1.7.5. Temporal Data mining for Anomaly Detection 32
1.7.6. Techniques for Combining of Decisions 40
1.7.7. Training and Testing Methodology 41

1.8. Methodology of Allocation and Management of Training and Testing Datasets 42
1.9. Conclusion 43

Chapter 2. Intrusion Detection Learning System Design, Implementation and Deployment.
Ontology of Intrusion Detection Learning 45
2.1. MASDK: Generic Model of a Software Agent 45
2.2. Agent Specification Technology 48
2.3. Information Fusion Learning Toolkit 55
2.4. Problem Ontology for Data Fusion and Learning Data Fusion 58
2.5. Intrusion Detection Application ontology 61
2.6. Intrusion Detection Learning Application ontology 67
2.7. Conclusion 71

Chapter 3. Multi-agent Architecture and Operation of Intrusion Detection Learning System 72
3.1. Architecture of Intrusion Detection Learning System 72
3.2. Functional Structure and Operation of Generalized IDS 80
3.3. Intrusion Detection Learning Scenario 82
3.4. Engineering of the Shared Components of the Application Ontology 85
3.5. Design of the Structure of Classifiers 87
3.6. Training and Testing of Base Classifiers 89

 3

3.7. Engineering and Training of Meta–Classifier 91
3.8. Testing of IDS, Monitoring of the Training and Testing Procedures 93
3.9. Conclusion 94

Chapter 4. Case Study Description 95
4.1. Description of Attacks Included in Case Study 95
4.2. Data Sources and Structures Representing Training and Testing Data 99
4.3. Specification of Instances of Data Structures of Different Sources 100
4.4. Examples of Training and Testing Data 104

4.4.1. Examples of Training and Testing Data of Network-based Source (Traffic
Level) 104

4.4.2. Examples of Training and Testing Data of Host-based Source (Operating
System Level) 109

4.4.3. Examples of Training and Testing Data of Application-based Source (FTP-
Server Level) 112

4.5. Conclusion 114
Chapter 5. Software Prototypes of Components of Multi-agent Intrusion Detection Learning

System and Simulation Results 115
5.1. Generic Architecture and Engineering of IDLS Software Prototype 115
5.2. Intrusion Detection KDD Master Agent 119

5.2.1. Meta-level Ontology Editing 119
5.2.2. Editing of the Decision Fusion Meta–model 120
5.2.3. Analysis of Data Available for Classifiers Training and Testing 121

5.3. Intrusion Detection KDD–Agent of a Source 125
5.3.1. Base Classifiers Training Scenario 125
5.3.2. Conversion of Features 126
5.3.3. The VAM Method 127
5.3.4. The GK2 Method 130
5.3.5. Training Results’ Analysis 131

5.4. Meta-level Intrusion Detection KDD Agent 132
5.5. DSM-Agents 132
5.6. Testing of the Designed IDS Prototype and Assessment of Learning Quality 133
5.6.1. Peculiarities of Training and Testing Data and Respective Procedures 133
5.6.2. Description of Training and Testing Results and Evaluation of Classification

Quality
135

5.7. Conclusion 137
Project Conclusion 138
Publication of the Project Results 143
References 144
Appendixes. Logs of Operation of the Developed Software Prototype of Multi-agent Learning

System: Training and Testing for the Application corresponding to the Case Study 154
Appendix A. Training and Testing on the Basis of Network-based Datasets 154
Appendix B. Data Sources of OS and Application Level 168

 95

Chapter 4. Case Study Description
Abstract. The focus of the Chapter is specification of the case study used for validation of the
developed software prototypes of the components of Multi-agent IDLS. It describes categories and
instances of attacks used in the case study, data sources used and generic data structures
representing data of the selected sources. Additionally, the Chapter specifies instances of data
structures representing training and testing data sets used in data mining and KDD procedures and
demonstrates examples of training and testing instances as they are used in learning procedures.

4.1. Description of Attacks Included in Case Study

To generate training and testing data we selected four types of attack categories ([ideval-99], [Das-
00], [Kendall-99], [Lippmann et al-99], [Lippmann et al-00], [Korba-00], [Haines et al-01], [Stolfo et
al-00], [McClure et al-01], [Scambray et al-01], [Mahoney-03]):

 Probing – surveillance and other probing, i.e. testing a potential target to gather information
(e.g., port scanning).

 Remote to local (R2L) – unauthorized access from a remote machine, i.e. attacks in which an
unauthorized user is able to bypass normal authentication and execute commands on the target
(e.g. via guessing password).

 Denial of service (DOS) – attacks which prevent normal operation, such as causing the target
host or server to crash, or blocking network traffic.

 User to root (U2R) – unauthorized access to local superuser (root) privileges.
Besides attack traffic, we generated background normal traffic. To form normal traffic we applied

network consisting of three hosts including server, client 1 imitating normal work and attacks and
client 2 imitating only normal work. The server and client 1 used Windows XP, and client 2 –
Windows 2000. We initialized on each host three or four services (FTP, http, netbios, terminal
services (3369 tcp)).

The exemplars of attacks selected for each of the attack category are represented in the Tab.4.1. For
attack generation we used the components of Attack simulator developed by authors of the Project
([Gorodetski et al-02b], [Gorodetski et al-02a]) as well as well known utilities (nmap, PipeUpAdmin,
etc.).

Table 4.1. Attack categories and exemplars used in case study

Attack category Attack exemplar
1 Probing SYN-scan
2 R2L FTP-crack attack

3 DoS SYN flood

4 U2R PipeUpAdmin

Probing attacks

The essence of the probing attack consists in transmission of inquiries to the network services of
hosts and analysis of the responses from them. The purpose of the attack is detection of used hosts,
protocols, accessible ports of network services, creation rules of the connections identifiers, definition
of the active network services, selection of the users’ identifiers and passwords.

Examples of probing attacks [Mahoney-03]:
 Port scans – testing ports with listening servers. Tools such as NMAP (Fyodor, 2003) and

HPING (Sanfilippo, 2003) use sophisticated techniques to make scans hard to detect, for
example, scanning with RST or FIN packets (which are less likely to be logged), or using slow
scans to defeat an IDS looking for a burst of packets to a range of ports.

 IP sweep – testing a range of IP addresses with ping to determine which ones are alive.
Another way to gather a list of potential targets is to spoof a zone transfer request to a DNS
server, as is done by the ls command in NSLOOKUP.

 96

 Fingerprinting – determining the operating system version of the target based on
idiosyncrasies in responses to unusual packets, such as TCP packets with the reserved flags set.
This method, implemented by QUESO and NMAP, distinguishes among hundreds of
operating system versions using only 7 packets (Fyodor, 1998).

 Vulnerability testing – Network administration tools such as SATAN (Farmer & Venema,
1993), SAINT (Kendall, 1998), MSCAN (Kendall, 1998), and NESSUS (Deraison, 2003) test
for a wide range of vulnerabilities. These tools serve the dual purpose of allowing network
administrators to quickly test their own systems for vulnerabilities, and allowing attackers to
test someone else's system. NESSUS is open source, uses a scripting language and has an
extensive library of tests, which is updated as new vulnerabilities are discovered. As of
February 2003, NESSUS tests for 1181 vulnerabilities.

 Inside sniffing – An attacker with physical access to a broadcast medium such as Ethernet,
cable TV, or wireless, could sniff traffic addressed to others on the local net. Many protocols
such as telnet, FTP, POP3, IMAP, and SNMP transmit passwords unencrypted.

For generation of training and testing data in our case study we used TCP SYN scanning (SYN-
scan) attacks. TCP SYN scanning (SYN-scan) can be used for identification of active hosts (it is living
host scanning) or active services (ports) (it is port scanning). In the first case an attacker sends SYN
packets to the same service port to many different target hosts. Often the target hosts are queried in a
systematic, orderly fashion and the attacker sends the probes very frequently. In the second case SYN
packets are sent to many different ports to the same target hosts. If from the port the confirmation
packet SYN/ACK is received, the port listens; if the packet RST/ACK is received, the port does not
listen; if the answer is absent, the host does not work.

Two kinds of SYN-scan used for generation of training and testing data: TCP connect scan and
TCP Half SYN scan. TCP connect scan are based on full connection realization. Half scan is used for
a stealth detection of the open ports on a host. The packets initializing a connection are dispatched.
When responses come back, a connection is dropped, i.e. a packet having a flag RST is transferred.

R2L attacks

R2L attacks always exploit application protocols to gain control over the target. Kendall [Kendall-
99] describes several attacks, which can be grouped as follows:

 Password guessing – Many users tend to choose weak or easily guessed passwords. An attack
could try common passwords such as guest, the user name, or no password. If this fails, an
attacker could use a script to exhaustively test every word in a dictionary. Any service
requiring a password is vulnerable, for example, telnet, FTP, POP3, IMAP, or SSH.

 Server vulnerability – An attacker exploits a software bug to execute commands on the target,
often as root. For example, buffer overflow vulnerabilities have been discovered in sendmail
(SMTP), named (DNS), and imap. Other bugs may allow a command to be unwittingly
executed. For example, the PHF attack exploits a badly written CGI script installed on default
on an old version of apache. The following HTTP command will retrieve the password file on
a vulnerable server: GET� /cgi-bin/phf?Qalias=x%0a/usr/bin/ypcat%�
20passwd�

 Configuration error – An attacker exploits an unintended security hole, such as exporting an
NFS partition with world write privileges. One common error is setting up an open X server
(using the command xhost� +) when running a remote X application. The xlock attack scans
for open X servers, then displays a fake screensaver which prompts the user to enter a
password, which is then captured. xsnoop does not display anything; it merely captures
keystrokes.

 Backdoors – Once a host has been compromised, the attacker will usually modify the target to
make it easier to break in again. One method is to run a server such as netcat, which can listen
for commands on any port and execute them (Armstrong, 2001).

For generation of training and testing data in our case study we have used Password Guessing
(Cracking) attacks, including FTP-crack attacks. This attack class has a goal to gain an access (either
as a user or as a root) to the target host. An attacker (who does not have an account on the target host)
sends packets to that host over the network, guessing a password for a valid user. Frequently, this

 97

attack is realized by a simple dictionary (i.e. by using of simple variants of the account name). It can
be done over many services (telnet, FTP, pop, etc.).

DoS attacks

Denial of service attacks can target a server, a host, or a network. These either flood the target with
data to exhaust resources, or use malformed data to exploit a bug [Mahoney-03]. The attack “Denial of
Service” is designed to prevent legitimate users from using a system. Traditional Denial of Service
attacks are done by exploiting a buffer overflow, exhausting system resources, or exploiting a system
bug that results in a system that is no longer functional.

Kendall [Kendall-99] gives the following examples, all of which are used in the IDEVAL test set
[ideval-99]:

 Apache2 – Some versions of the apache web server will run out of memory and crash when
sent a very long HTTP request. Kendall describes one version in which the line "User-Agent:
sioux" is repeated 10,000 times.

 Back – Some versions of apache consume excessive CPU and slow down when the requested
URL contains many slashes, i.e. "GET /////////////...".

 Land – SunOS 4.1 crashes when it receives a spoofed TCP SYN packet with the source
address equal to the destination address.

 Mailbomb – A user is flooded with mail messages.
 SYN flood (Neptune) – A server is flooded with TCP SYN packets with forged source

addresses. Because each pending connection requires saving some state information, the target
TCP/IP stack can exhaust memory and refuse legitimate connections until the attack stops.

 Ping of death – Many operating systems could be crashed (in 1996 when the exploit was
discovered) by sending a fragmented IP packet that reassembles to 65,536 bytes, one byte
larger than the maximum legal size. It is called "ping of death" because it could be launched
from Windows 95 or NT with the command "ping –l 65510 target".

 Process table – An attacker opens a large number of connections to a service such as finger,
POP3 or IMAP until the number of processes exceeds the limit. At this point no new
processes can be created until the target is rebooted.

 Smurf – An attacker floods the target network by sending ICMP ECHO REQUEST (ping)
packets to a broadcast address (x.x.x.255) with the spoofed source address of the target. The
target is then flooded with ECHO REPLY packets from multiple sources.

 Syslogd – The syslog server, which could be used to log alarms remotely from an IDS, is
crashed by sending a spoofed message with an invalid source IP address. Due to a bug, the
server crashes when a reverse DNS lookup on the IP address fails.

 Teardrop – Some operating systems (Windows 95, NT, and Linux up to 2.0.32) will crash
when sent overlapping IP fragments in which the second packet is wholly contained inside the
first. This exploits a bug in the TCP/IP stack implementation in which the C function
memcpy() is passed a negative length argument. The argument is interpreted as a very large
unsigned number, causing all of memory to be overwritten.

 UDP storm – This attack sets up a network flood between two targets by sending a spoofed
UDP packet to the echo server of one target with the spoofed source address and port number
of the chargen server of the other target.

For generation of training and testing data in our case study we have used SYN flood attack. The
SYN flood attack consists of a storm of inquiries on installation of TCP-connections. In a TCP three–
steps handshake, the server responds to a client’s initial SYN packet by sending a SYN-ACK. The
server is waiting for another ACK from the client up to the connection becomes “established”.
Generally, this is not a problem if the server is only waiting for single or a few connections to
complete the handshake. However, the server’s queue for holding “waiting for connections to be
completed” is of finite size. Thus, if an attacker send many spoofed SYN packets from non-existing IP
addresses to a single target port on the server then the server’s queue would fill up and the server
would become temporarily unable to respond to any new service requests. Further, the server will
remain in this state until the “waiting to be established” connections are timed out, which can take a

 98

minute or two. During this time, legitimate clients will be unable to establish connections with the
server on the target port.

U2R attacks

In User to root (U2R) attacks a user with login access is able to bypass normal authentication to
gain the privileges of another user, usually root (e.g. various ``buffer overflow'' attacks). U2R attacks
exploit bugs or misconfigurations in the operating system, for example a buffer overflow or
incorrectly set file permissions in a suid root program. U2R attacks allow increasing privileges of users
to the superuser (for example, SYSTEM).

In our experiments we used the U2R attack “PipeUpAdmin”. It is based on well known
vulnerability of Windows 2000 permitting to increase privileges via prediction of named pipes of
Service Control Manager (SCM) [Scambray et al-01]. This vulnerability allows to interactively
connected users to get SYSTEM privilege.

The SCM service uses in intraprocess communication unique names of pipes for each
executed service. The format of name for such a pipe is as follows: \\.pipe\net\NtControlPipe12 ,
where 12 is the pipe number. After reading the value of the Register key
HKLM\SYSTEM\CurrentControlSet\Control\ServiceCurrent, an attacker can conclude that the next
name of the pipe will be \\.\pipe\net\NtControlPipe13 .

In this attack a predictability of a pipe number is used, which is created before creating of a pipe
with the same name by service SCM. When the new service is initialized, it will connect to the
malefactor’s pipe. After this event the malefactor’s pipe can use context of security service and
he/she get a possibility to execute commands with the SYSTEM privilege if this privilege is used by
the service. The utility PipeUpAdmin can be used to use this vulnerability. PipeUpAdmin adds
account of the current user to the group of the local administrators. Let us consider an example of this
utility usage.

Let the user Vladimir initialize the utility:

C:\>pipeupadmin

PipeUpAdmin
Maceo <maceo@dogmile.com>
(C) Copyright 2000-2001 dogmile.com

The ClipBook service is not started. More help is available by typing NET HELPMSG 3521.
Impersonating: SYSTEM
The account: FS-EVIL\vladimir
has been added to the Administrators group.

Then the user Vladimir executes command net localgroup and finds his name in the group of the
local administrators:

C:\>net localgroup administrators

Alias name administrators
Comment Administrators have complete and unrestricted

access to the computer/domain

Members

Administrator
vladimir

The command completed successfully.

The next action of the user vladimir to get SYSTEM privileges is to log off and again log on. This
operation is needed since Windows 2000 has to change security token of the current user to add to it

 99

the identifier SID of a new group. The security token can be changed by API function call or exit from
the system (log off) and next log on.

4.2. Data Sources and Structures Representing Training and Testing Data

The data sources and generic data structures representing training and testing data described below
were partially selected on the basis of compilation of the results published in ([ideval-99], [Lee-99],
[Lee et al-00a], [Stolfo et al-00], [Dokas et al-02], [Lazarevic et al-03a], etc.) and partially were
proposed by authors of the Project.

The motivations of chosen selection are as follows:
1. The objective of the Project is to develop technology for learning of intrusion detection on the

basis of multiple heterogeneous data sources, therefore the number of data sources must be no
less than two.

2. Different attacks can produce evidences in different sources (levels) and in different sets of
features produced on the basis of raw data of each level. This is the reason of using several data
structures produced on the basis of the respective raw data in each data source.

3. It is desirable to involve in intrusion detection learning procedure heterogeneous data structures
to validate the feasibility of the developed distributed learning technology as well as multi-agent
architecture and data fusion model of IDLS. This is the reason of using data structures of both
time-based and relational natures.

4. It is desirable to use the same generic data structures for each particular data source. This can
made it easier the code writing efforts due to minimization of particular data mining and KDD
techniques covering the learning needs.

5. Practically, each attack is developing on a background reflecting normal user activity, this is why
it is necessary to use training and testing data representing malicious user activity mixed with
normal user activity background.

Actually three data sources are selected, that are network-based (traffic level), host-based
(operating system level) and application-based (in particular, FTP-server level). It is supposed that
each data source is represented by four generic data structures, which are the same for each data
source. These data structures correspond to data produced on the basis of processing of raw data.
These data structure are as follows:
1. Time ordered sequence (time series) of values of binary vectors of parameters specifying significant

events of raw data of a level (traffic level, OS logs and FTP-server logs). Graphical explanation of
this data structures is given in Fig.4.1. Specialization of this data for each data source is given in
the next section.
In fact, this data structure specifies time series and it is supposed that technique developed

specifically for discrete vector time series based on correlation and regression analysis is used.

2. Statistical attributes of particular connections (performance of a user) showed in a data source
(traffic level, OS logs and FTP-server logs). Each such slot of data consists of the same attributes
for each data source mapped to the time interval of connection appearance. Graphical explanation
of this generic data structure is given in Fig.4.2.

3. Statistical attributes of traffic (users' activity) during the short term time intervals (2 or 5 second
duration as recommended in ([ideval-99], [Lee-99], [Lee et al-00a], [Stolfo et al-00], [Dokas et al-
02], [Lazarevic et al-03a], etc.). Graphical explanation of this data structure is given in Fig.4.3.

.

Fig.4.1. Graphical representation of data structures specifying time-ordered binary
vectors of significant events of raw data in each data source

T–Discrete time

 100

4. Statistical attributes of traffic (users' activity) during the long term time intervals corresponding to a
given number of connections (as a rule, d=100 connections that can correspond up to decades of
minutes) ([ideval-99], [Lee-99], [Lee et al-00a], [Stolfo et al-00], [Dokas et al-02], [Lazarevic et
al-03a], etc.) or 10-60 min interval. Graphical explanation of this data structure is given in Fig.4.4.

4.3. Specification of Instances of Data Structures of Different Sources

Let us consider main instances of training and testing data structures of three sources chosen:
network-based source (traffic level); host-based source (operating system level); application-based
source (FTP-server level). Each data source is presented by four generic data structures, which are the
same for each data source.

1. Specification of instances of data structures of network-based source (traffic level)

The data structures of network-based source (traffic level) were produced on the basis of
processing of tcpdump/windump data. We used for this TCPtrace utility [Tcptrace] and several
programs developed by the authors of the Report. Let us consider instances of the data structures of
network-based source (traffic level).

…………………………………….

……………………………………..

C1: k21 x,...,x,x

C2: k21 x,...,x,x

C3: k21 x,...,x,x

CN: k21 x,...,x,x

T–time
Fig.4.2. Graphical representation of data structures specifying statistical attributes of particular

connections in each data source mapped to the respective time interval of connection performance

C1

C2

C3

CN

X(i)=< s21 x,...,x,x >

d(1) d(3) d(2) d(5) d(6)d(4) d(8) d(7)

Fig.4.3. Graphical representation of data structures specifying integrated (disregarding particular connections)
statistical attributes of a data source (traffic level, OS logs and FTP-server logs) within short term time
interval d(i) (as a rule, d=5 sec), i=1,2,…

X(1) X(3)X(2) X(5) X(6)X(4) X(8) X(7)

T–time

Y(i)=< s21 y,...,y,y >

d(1) d(2) d(3) d(4)

Fig.4.4. Graphical representation of data structures specifying integrated (disregarding particular connections)
statistical attributes of a data source (traffic level, OS logs and FTP-server logs) within long term time
interval d(i) corresponding to a given number of connections (as a rule, d=100 connections), i=1,2,…

Y(1) Y(3) Y(2) Y(4)

T–time

 101

Time ordered sequence of values of binary vectors of parameters specifying significant events of
network traffic level

We chose the combination of values of the tag Flag of TCP packet header as parameters specifying
significant events. In this data structure, each network packet is described by binary vector consisted
of six values of the following separate flags: U (URG) – urgent pointer is valid; A (ACK) –
acknowledgement number is valid; P (PSH) – tells receiver not to buffer the data before passing it to
the application; R (RST) – reset (abort) the connection; S (SYN) – synchronize the sequence numbers
to establish a connection; F (FIN) – finish of data transmission. Thus, each vector corresponding to
certain network event is described by the seven features: Time, U, A, P, R, S, F, where values of the
last six attributes are binary (1 or 0). Examples of binary vectors of parameter Flag are as follows:

U A P R S F Corresponding integral value of the parameter Flag:
0 0 0 0 1 0 S
0 1 0 0 0 0 A
0 1 0 0 1 0 SA

Statistical attributes of particular connections

The list of the parameters (features) describing this data structure is as follows:

Feature Description Value Type
time Time of connection initialization Continuous
duration Length (number of seconds) of the connection Continuous
connection_status Status of the connection (0 – Completed; 1 - Not

completed; 2 – Reset)
Discrete

num_packets The common number of packets during connection Continuous

The key parameters “time” and “duration” allow for setting a time ordered sequence of attributes
characterizing separate connections.

Statistical attributes of network traffic during the short term time intervals (5 second)

The list of the parameters describing this data structure is as follows:

Feature Description Value Type
count_src Number of connections made by the same source as the

current record
Continuous

count_dest Number of connections made to the same destination as
the current record

Continuous

count_serv_src Number of different services from the same source as the
current record

Continuous

count_serv_dest Number of different services to the same destination as
the current record

Continuous

Statistical attributes of network traffic during the long term time intervals (100 connections)

The list of the parameters describing this data structure is as follows:

Feature Name Feature description Value Type
count_src Number of connections made by the same source as the

current record
Continuous

count_dest Number of connections made to the same destination as
the current record

Continuous

count_serv_src1 Number of connections with the same service made by
the same source as the current record

Continuous

count_serv_dst1 Number of connections with the same service made to the
same destination as the current record

Continuous

 102

2. Specification of instances of data structures of host-based source (operating system level)

The data structures of host-based source (operating system level) were produced on the basis of
processing of raw data of operating system log Security (for Windows 2000/XP). We used for this
processing several programs developed by the authors of the Report. Let us consider instances of the
data structures of host-based source (operating system level).

Time ordered sequence of values of binary vectors of parameters specifying significant events on
operating system level

The values of binary vectors are signs of appearance (1 or 0) of significant events from operating
system log Security (for Windows 2000/XP). In this data structure, each OS event is described by
binary vector consisting of values of the parameters denoting events numbers significant for attacks
generated.

For our case study we chose 10 events numbers significant for the attacks generated: 512 –
Window is starting up; 513 – Windows is shutting down; 517 – The audit log was cleared; 528 –
Successful Logon; 529 – Logon Failure; Unknown user name or bad password; 530 – Logon Failure;
Account logon time restriction violation; 538 – The logoff process was completed for a user; 592 –
The virtual address space and the control information necessary for the execution of a program was
created; 636 – Security Enabled Local Group Member Added; 680 – Logon attempt.

Thus, each vector corresponding to certain OS event is described by eleven features: Time, 512,
513, 517, 528, 529, 530, 538, 592, 636, 680, where values of last 10 attributes are binary (1 or 0).

Examples of binary vectors describing OS events (without time attribute) are as follows (each
string corresponds to particular vector, XXX – any event that is not significant for reflecting attacks
generated):

512 513 517 528 529 530 538 592 636 680 Corresponding OS Event
0 0 0 0 0 0 0 0 0 0 XXX
0 0 0 0 0 0 0 0 0 1 680
0 0 0 0 1 0 0 0 0 0 529

Statistical attributes of particular sessions of a user performance on OS level

The list of the parameters describing this data structure is as follows:

Feature Description Value Type
time Time of the process initialization Continuous
duration Length (number of seconds) of the process execution Continuous
logged_in 1 - successfully logged in; 0 - otherwise Discrete
hot Number of “hot indicators” (e.g., access to system

directories, creation and execution of programs, etc.)
Continuous

mem_add 1 - Security enabled local group member added; 0 -
otherwise

Discrete

Statistical attributes of OS functioning during the short term time intervals (5 second)

The list of the parameters describing this data structure is as follows:

Feature Description Value Type
hot Number of “hot indicators” (e.g., access to system

directories, creation and execution of programs, etc.)
Continuous

failed_logins Number of failed login attempts Continuous
shutt_down 1 - OS shutting down; 0 - otherwise Discrete

 103

starting_up 1 - OS starting up; 0 - otherwise
(we assume that OS event “starting up” marks the
beginning of time interval 5 sec)

Discrete

mem_add 1 - Security enabled local group member added; 0 -
otherwise

Discrete

Statistical attributes of OS functioning during the long term time intervals (10 – 60 minutes)

The list of the parameters describing this data structure is as follows:

Feature Description Value Type
hot Number of “hot indicators” (e.g., access to system

directories, creation and execution of programs, etc.)
Continuous

Failed_logins Number of failed login attempts Continuous
shutt_down Number of OS shutting down Continuous
starting_up Number of OS starting up Continuous
mem_add Number of events when security enabled local group

member added; 0 - otherwise
Continuous

3. Specification of instances of data structures of application-based source (FTP-server level)

The data structures of application-based source (FTP-server level) were produced on the basis of
processing of raw data of FTP-server log. We used for this processing several programs developed by
the authors of the Report.

Let us consider instances of the data structures of application-based source (FTP-server level).

Time ordered sequence of values of binary vectors of parameters specifying significant events on FTP-
server level

The values of binary vectors are signs of appearance (1 or 0) of significant events from FTP-server
log. In this data structure (as for OS level), each event is described by binary vector consisted of
several values of the parameters denoting events numbers from FTP-server log (FTP return codes) that
are significant for attacks generated.

For our case study we chose preliminarily only 2 events numbers (FTP return codes) significant for
the attacks generated: 331 – User name okay, need password; 530 – Not logged in. Thus, each vector
corresponding to some FTP event is described by three features: Time, 331, 530, where values of last
two attributes are binary (1 or 0). Examples of binary vectors describing FTP events (without time
attribute) are as follows (each string corresponds to particular vector, XXX – any event that is not
significant for reflecting attacks generated):

331 530 Corresponding FTP Event

0 0 XXX
1 0 331
0 1 530

Statistical attributes of particular sessions of a user performance on FTP-server level

The list of the parameters describing this data structure is as follows:

Feature Description Value Type
time Time of the process initialization Continuous
duration Length (number of seconds) of the process execution Continuous

 104

hot Number of “hot indicators” (e.g., access to system
directories, creation and execution of programs, etc.)

Continuous

failed_logins Number of failed login attempts Continuous
logged_in 1 - successfully logged in; 0 - otherwise Discrete

Statistical attributes of FTP-server functioning during the short term time intervals (5 second)

The list of the parameters describing this data structure is as follows:

Feature Description Value Type
Hot Number of “hot indicators” (e.g., access to system

directories, creation and execution of programs, etc.)
Continuous

failed_logins Number of failed login attempts Continuous
successful_logins Number of successful logins Continuous

Statistical attributes of FTP-server functioning during the long term time intervals (10 – 60 minutes)

The list of the parameters describing this data structure is as follows:

Feature Description Value Type
hot Number of “hot indicators” (e.g., access to system

directories, creation and execution of programs, etc.)
Continuous

failed_logins Number of failed login attempts Continuous
successful_logins Number of successful logins Continuous

4.4. Examples of Training and Testing Data

Let us consider examples of training and testing data for each of four generic data structures of еру
three sources. These examples are presented for all five exemplars of attacks concerning to four
attacks categories selected. We describe also examples of data fixed for normal users’ work. For each
data structure we determine only examples of attacks data differing from normal work.

The heading for each exemplar of data is represented in the following format:
Attack category: Attack exemplar.

4.4.1. Examples of Training and Testing Data of Network-based Source (Traffic Level)

1. Examples of time ordered sequences of values of binary vectors of parameters specifying
significant events of network traffic level

(1) Probing: SYN-scan
Example 1 (representing only abnormal traffic):
Representation of instances of training and testing data as ordered sequence of integral values of

the parameters Flag:
S R R S SA R R S R R S R R S R R S SA R R … ,

where sequence S R R describes the state “port is closed”, and S SA R R – “port is open”.
This data can be represented as time ordered sequence of binary vectors of parameter Flag values:

Values of parameter Flag Number of

binary
vector

Time

U A P R S F

Corresponding integral value of the
parameters Flag

1 16:35:18.555138 0 0 0 0 1 0 S

2 16:35:18.555195 0 0 0 1 0 0 R

3 16:35:19.565206 0 0 0 1 0 0 R

 105

4 16:35:19.591847 0 0 0 0 1 0 S

5 16:35:19.591940 0 1 0 0 1 0 SA

6 16:35:19.592889 0 0 0 1 0 0 R

7 16:35:20.618765 0 0 0 1 0 0 R

… …. … … … … … … …

To abridge the representation of examples of data, below in this subsection we use only
representation of instances of training and testing data as ordered sequences of integral values of the
parameters Flag.

Example 2 (representing combination of abnormal and normal traffic):
S X R R X S SA R X R S R R S X R R S R R X S SA X R R …
S R X R X X S X SA R X R X S R X R S R X R S R X R S X SA R X R … ,

where X – integral value of the parameters Flag reflecting normal traffic.

(2) R2L: FTP-crack

Example 1 (representation of the completed connection reflecting two attempts of password
guessing):

S SA A PA PA PA PA PA PA PA PA PA PA PA PA PA FA A

Example 2 (representation of the completed connection reflecting three attempts of password
guessing):

S SA A PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA FA A

(3) DoS: SYN-flood

Example 1 (representation of the attack process when “victim” does not answer):
S S S S S S S S S S S S S …

Example 2 (representation of the attack process when “victim” answers):

S SA S SA S SA S SA S SA S SA S SA S SA S SA S SA S SA S SA S …

(4) Normal traffic

Example 1:
S SA S PA PA PA SA F PA PA FA PA PA F FA …

2. Examples of statistical attributes of particular connections

For description of examples, we use the following features:
 Time - Time of the connection initialization;
 Duration - Length (number of seconds) of the connection;
 connection_status - Status of the connection (0 – Completed; 1 - Not completed; 2 – Reset);
 num_packets - The common number of packets.

(1) Probing: SYN-scan

Example 1:

time duration connection_status num_packets
Wed May 21 16:35:18.555138 2003 0:00:01.010068 2 3
Wed May 21 16:35:19.591847 2003 0:00:01.026917 2 4
Wed May 21 16:35:20.640751 2003 0:00:01.007608 2 3
Wed May 21 16:35:19.791747 2003 0:00:01.026917 2 4

 106

(2) R2L: FTP-crack

Example 1 (number of packets transmitted during different connections is the same):

time duration connection_status num_packets
Tue May 6 17:53:15.359650 2003 0:00:00.181004 0 20
Tue May 6 17:53:15.534327 2003 0:00:00.115962 0 20
Tue May 6 17:53:15.651894 2003 0:00:00.131135 0 20

Example 2 (number of packets transmitted during different connections can be changed, i.e. for one

connection one, two or three passwords can be transmitted):

time duration connection_status num_packets
Tue May 6 17:53:15.359650 2003 0:00:00.181004 0 20
Tue May 6 17:53:15.534327 2003 0:00:00.115962 0 15
Tue May 6 17:53:15.651894 2003 0:00:00.131135 0 20
Tue May 6 17:53:15.732317 2003 0:00:00.115962 0 10

In this example in the first connection three password are transmitted, in the second - two, in the

third - three and in the forth - one.

(3) DoS: SYN-flood

Example 1:

time duration connection_status num_packets
Fri May 23 17:05:20.232783 2003 0:00:00.000000 1 1
Fri May 23 17:05:20.234642 2003 0:00:00.000000 1 1
Fri May 23 17:05:20.248258 2003 0:00:00.000000 1 1
Fri May 23 17:05:20.252783 2003 0:00:00.000000 1 2
Fri May 23 17:05:20.258642 2003 0:00:00.000000 1 2
Fri May 23 17:05:20.261258 2003 0:00:00.000000 1 2

(4) Normal traffic

Example 1:

time duration connection_status num_packets
Fri May 23 17:05:20.232783 2003 0:00:10.000000 0 10
Fri May 23 17:05:20.234642 2003 0:01:01.000000 0 1000
Fri May 23 17:05:20.248258 2003 0:00:45.000000 0 55

3. Examples of statistical attributes of network traffic during the short term time intervals (5
second)

For description of examples, we use the following features:
 count_src - Number of connections made by the same source as the current record;
 count_dest - Number of connections made to the same destination as the current record;
 count_serv_src - Number of different services from the same source as the current record;
 count_serv_dest - Number of different services to the same destination as the current record.

 107

(1) Probing: SYN-scan

Example 1:

count_src count_dest count_serv_src count_serv_dest
2 2 1 1
2 2 1 1
3 3 1 1
2 2 1 1
3 3 1 1

(2) R2L: FTP-crack

Example 1:

count_src count_dest count_serv_src count_serv_dest
5 5 1 1
5 5 1 1
5 5 1 1
6 6 1 1
6 6 1 1

(3) DoS: SYN-flood

Example 1:

count_src count_dest count_serv_src count_serv_dest
750 750 1 1
742 742 1 1
746 746 1 1
736 736 1 1
740 740 1 1
748 748 1 1

(4) Normal traffic

Example 1:

count_src count_dest count_serv_src count_serv_dest
1 2 1 1
3 3 1 1

10 12 3 2
5 6 2 2
3 4 1 1

12 12 3 2

 108

4. Examples of statistical attributes of network traffic during the long term time intervals
corresponding to 100 connections

For description of examples, we use the following features:
 count_src - Number of connections made by the same source as the current record;
 count_dest - Number of connections made to the same destination as the current record;
 count_serv_src1 - Number of connections with the same service made by the same source as

the current record;
 count_serv_dst1 - Number of connections with the same service made to the same destination

as the current record.

(1) Probing: SYN-scan

Example 1 (SYN-scan attacks were executed only in several connections, other connections reflect
normal traffic):

count_src Count_des count_serv_src1 count_serv_dst1
39 46 6 12
50 49 6 12
65 46 9 14
39 42 6 9
63 57 7 13

(2) R2L: FTP-crack

Example 1 (FTP-crack attacks were executed in most of connections):

count_src Count_dest count_serv_src1 count_serv_dst1
64 61 26 12
71 79 23 12
79 76 39 14
64 59 26 9
74 83 57 13

(3) DoS: SYN-flood

Example 1:

count_src count_dest count_serv_src1 count_serv_dst1
99 99 99 99
98 98 98 98
97 97 97 97
97 97 97 97
95 95 95 95
94 94 94 94

(4) Normal traffic

Example 1:

count_src count_dest count_serv_src1 count_serv_dst1

43 83 21 45
50 98 25 52
45 90 16 35
43 87 19 39
42 83 23 46

 109

4.4.2. Examples of Training and Testing Data of Host-based Source (Operating System Level)

1. Examples of time ordered sequences of values of binary vectors of parameters specifying
significant events on operating system level

(1) R2L: FTP-crack

Example 1:

Representation of instances of training and testing data as ordered sequence of OS event numbers:

XXX 680 529 XXX XXX 680 529 680 529 XXX 680 529 XXX XXX XXX XXX 680 529,
where XXX – any event that is not significant for reflecting attacks generated;

529 – Logon Failure. Unknown user name or bad password;
680 – Logon attempt.

The corresponding vectors describing OS events (without time attribute) are as follows (each string
corresponds to particular vector):

512 513 517 528 529 530 538 592 636 680 Corresponding OS Event

0 0 0 0 0 0 0 0 0 0 XXX
0 0 0 0 0 0 0 0 0 1 680
0 0 0 0 1 0 0 0 0 0 529
0 0 0 0 0 0 0 0 0 0 XXX
0 0 0 0 0 0 0 0 0 0 XXX
0 0 0 0 0 0 0 0 0 1 680
0 0 0 0 1 0 0 0 0 0 529
0 0 0 0 0 0 0 0 0 1 680
0 0 0 0 1 0 0 0 0 0 529
0 0 0 0 0 0 0 0 0 0 XXX
0 0 0 0 0 0 0 0 0 1 680
0 0 0 0 1 0 0 0 0 0 529
0 0 0 0 0 0 0 0 0 0 XXX
0 0 0 0 0 0 0 0 0 0 XXX
0 0 0 0 0 0 0 0 0 0 XXX
0 0 0 0 0 0 0 0 0 0 XXX
0 0 0 0 0 0 0 0 0 1 680
0 0 0 0 1 0 0 0 0 0 529

To abridge the representation of examples of data, below in this subsection we use only

representation of instances of training and testing data as ordered sequences of OS event numbers.

(2) DoS: SYN-flood

This attack does not result on OS shut down for Windows 2000/XP. So the OS event sequence is
the same as for normal traffic.

Example 1:
XXX XXX XXX XXX XXX XXX 530 XXX XXX XXX XXX XXX XXX,

where XXX – any event that is not significant for reflecting attacks generated; 530 – Logon Failure.
Account logon time restriction violation.

 110

(3) U2R: PipeUpAdmin

Example 1:
680 528 XXX XXX XXX XXX 592 592 592 592 592 592 592 XXX 636 XXX XXX 538 ,

where XXX – any event that is not significant for reflecting attacks generated; 528 – Successful
Logon; 592 – The virtual address space and the control information necessary for the execution of a
program was created; 538 – The logoff process was completed for a user; 636 – Security Enabled
Local Group Member Added; 680 – Logon attempt.

The first creation of the process under initialization of PipeUpAdmin.exe (corresponding to event
592) produces two sequences of events. Each of these sequences consists of generating three processes
(«\WINNT\system32\cmd.exe», «\WINNT\system32\net.exe» and «\WINNT\system32\net1.exe»).
Thus, six additional events 592 are fixed.

After malefactor cleans OS SECURITY log it will fix the following sequence of events:
517 XXX XXX XXX 538 XXX XXX … ,

where XXX – any event that is not significant for reflecting attacks generated; 517 – The audit log was
cleared; 538 – The logoff process was completed for a user.

(4) Normal traffic

Example 1:
XXX XXX XXX XXX XXX XXX 530 XXX XXX XXX XXX XXX XXX

2. Examples of statistical attributes of particular sessions of a user performance on OS level

(1) R2L: FTP-crack

Example 1:

time duration logged_in hot mem_add
17:53:45 0 0 0 0
17:53:45 0 0 0 0
17:53:46 0 0 0 0
17:53:47 0 0 0 0

(2) U2R: PipeUpAdmin

Example 1:

time duration logged_in hot mem_add
7:40:41 0:1:29 1 1 1

(3) Normal traffic

Example 1:

time duration logged_in hot mem_add
17:53:45 5.005 1 6 0
17:53:47 1.654 1 0 0
17:53:54 452.234 1 20 0

 111

3. Examples of statistical attributes of OS functioning during the short term time intervals
 (5 second)

(1) R2L: FTP-crack
Example 1:

hot failed_logins shutt_down starting_up mem_add
0 12 0 0 0
0 14 0 0 0
0 6 0 0 0

(2) U2R: PipeUpAdmin

Example 1:

hot failed_logins shutt_down starting_up mem_add
2 0 0 0 1
2 0 0 0 0

(3) Normal traffic

Example 1:

hot failed_logins shutt_down starting_up mem_add
2 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
6 0 0 1 1
0 0 0 0 0
0 1 0 0 0
2 0 0 0 0
0 0 0 0 0

4. Examples of statistical attributes of OS functioning during the long term time intervals
corresponding to 10 – 60 minutes

(1) R2L: FTP-crack
Example 1:

hot failed_logins shutt_down starting_up mem_add
2 120 0 0 0

12 344 1 1 0
0 248 0 0 0

(2) U2R: PipeUpAdmin

Example 1:

hot failed_logins shutt_down starting_up mem_add
12 1 0 0 1
10 0 0 0 0

 112

(3) Normal traffic

Example 1:

hot failed_logins shutt_down starting_up mem_add
12 0 0 0 0
44 0 0 0 0
20 1 0 0 0
28 0 1 1 0
0 0 0 0 0

4.4.3. Examples of Training and Testing Data of Application-based Source (FTP-server Level)

1. Examples of time ordered sequences of values of binary vectors of parameters specifying
significant events on FTP-server level

(1) R2L: FTP-crack

Example 1:

Representation of instances of training and testing data as ordered sequence of FTP event numbers
(corresponding to the FTP return codes):

XXX XXX 331 530 XXX XXX XXX 331 530 331 530 331 530 XXX XXX ,
where XXX – any event that is not significant for reflecting attacks generated; 331 – User name okay,
need password; 530 – Not logged in.

The corresponding vectors describing FTP events (without time attribute) are as follows (each
string corresponds to particular vector):

331 530 Corresponding FTP Event

0 0 XXX
0 0 XXX
1 0 331
0 1 530
0 0 XXX
0 0 XXX
0 0 XXX
1 0 331
0 1 530
1 0 331
0 1 530
1 0 331
0 1 530
0 0 XXX
0 0 XXX

To abridge the representation of examples of data, below in this subsection we use only

representation of instances of training and testing data as ordered sequences of OS event numbers.

 113

(2) Normal traffic
Example 1:

XXX XXX XXX XXX XXX XXX XXX XXX ,
where XXX – any event that is not significant for reflecting attacks generated;

2. Examples of statistical attributes of particular sessions of a user performance on FTP-server
level

(1) R2L: FTP-crack
Example 1:

time duration hot failed_logins logged_in

17:53:45 1 0 3 0
17:53:45 1 0 3 0
17:53:46 0 0 2 0
17:53:47 1 0 3 0

(2) Normal traffic

Example 1:

time duration hot failed_logins logged_in
17:53:45 5 1 0 1
17:53:47 1 0 0 1
17:53:54 452 7 0 1

3. Examples of statistical attributes of FTP-server functioning during the short term time intervals

(5 second)

(1) R2L: FTP-crack

Example 1:

hot failed_logins successful_logins
0 12 0
0 14 0
0 6 0

(2) Normal traffic

Example 1:

hot failed_logins successful_logins
2 0 1
0 0 0
0 0 0
4 0 1

 114

4. Examples of statistical attributes of FTP-server functioning during the long term time intervals
corresponding to 10 – 60 minutes

(1) R2L: FTP-crack

Example 1:

Hot failed_logins successful_logins

2 120 6
12 344 12
0 248 8

(2) Normal traffic

Example 1:

hot failed_logins successful_logins
1 1 8
8 0 15

15 2 11

4.5. Conclusion

In the Chapter the case study used for development of software prototype of the IDLS components
is specified.

We determined the categories and instances of attacks to be used in the case study. To generate
training and testing data we selected four types of attack categories: Probing; Remote to local (R2L);
Denial of service (DOS); User to root (U2R). The exemplars of attacks selected for case study are
SYN-scan, FTP-crack attack, SYN flood, and PipeUpAdmin.

The data sources used and generic data structures representing training and testing data of the
selected sources are described. We have chosen three data sources for training and testing data:
network-based (traffic level), host-based (operating system level) and application-based (FTP-server
level). Each data source is represented by four generic data structures. These data structures
correspond to the data produced on the basis of raw data processing. These data structure are as
follows:

1. Time ordered sequence of values of binary vectors of parameters specifying significant events
of raw data of a level (traffic level, OS logs and FTP-server logs);

2. Statistical attributes of particular connections (performance of a user) manifested in a data
source (traffic level, OS logs and FTP-server logs);

3. Statistical attributes of traffic (users' activity) during the short term time intervals;
4. Statistical attributes of traffic (users' activity) during the long term time intervals.
The instances of data structures representing training and testing data sets to be used in data

mining and KDD procedures are specified. The data structures of the network-based source (traffic
level) are produced on the basis of processing of tcpdump/windump data. The data structures of host-
based source (operating system level) were produced on the basis of processing of operating system
log Security (for Windows 2000/XP). The data structures of application-based source (FTP-server
level) were produced on the basis of processing of FTP-server log. We used for generating these data
structures TCPtrace utility and several programs developed by the authors of the Report.

The examples of training and testing instances of each selected data source as they are used in
learning procedures in case study are represented. These examples were presented for all five
exemplars of attacks concerning to four attacks categories selected. We described also examples of
data fixed for normal users’ activity.

 115

Chapter 5. Software Prototypes of Components of Multi-agent Intrusion
Detection Learning System and Simulation Results

Abstract. This Chapter aims at simulation based assessment and validation of the main results of the
Project that are methodology and technology for multi-agent IDLS design, implementation and
deployment supported by the developed software tool and detailed realization of multi-agent
architecture of generic IDLS. In this respect, the Chapter describes (1) the developed, implemented
and deployed over a computer network components of the software prototype of a multi-agent
Intrusion Detection Learning System destined for learning of intrusion detection in the framework of
the elaborated case study (see Chapter 4) and (2) results of its testing. Design and implementation of
the components of the above software prototype is accompanied by demonstration of the practical use
of the developed methodology, technology and supporting software tool thus making it possible to
validate them. The analysis of the testing results of the software prototype allow to conclude that the
agent-based approach to IDL and elaborated methodology, technology and software tool constitute a
promising starting platform for further research and development of the prospective IDLS. Detailed
description of the training and testing procedures, intermediate and final results in all the steps of the
IDS distributed learning including testing of particular base classifiers and also meta-classifier which
produces the final decisions is given in Appendix following the Report itself.

5.1. Generic Architecture and Engineering of IDLS Software Prototype

Data Sources, Logical and Physical Hosts

Engineering of a multi-agent IDLS and its decision making component, IDS1, starts with the
preliminary analysis of the application domain, available data sources and their situation (location)
within computer network. Data sources are here understood not as the sensor data but as records of
databases, which are specified by their DNS names in ODBC managers of respective hosts.

In order to simplify the system
configuration process, the notion of
data source logical host is introduced.
The logical host of a data source is
determined by the IP address of the
physical host and by the DNS name of
the source’s ODBC. Several logical
hosts of data sources can be located
on a single physical host of a LAN
(Fig.5.1).

Generation of IDL MAS components
through Use of MASDK

According to the technology
implemented to date (see Chapters 1,
2), in order to build an IDLS as
applied Information Fusion MAS, the
former is firstly specified in the
System Kernel of the MASDK and
resulting system is called "Empty IDL
MAS". This specification includes
making use of Generic agent

(invariant component of any MAS including IDLS MAS) as a template for specification of agent
classes (the agent classes are the same for different IF applications and that is why they can be
specified in advance and afterwards used as reusable components in different IF systems, including

1 We suppose further that term "IDLS" and "IDL MAS" concerns to the multi-agent that solves both intrusion
detection learning and intrusion detection tasks.

DB 1 DB 2

• DSN_DB1
• DSN_DB2

DataSrc1 DBBands1

DB 3

DataSrc2

• DSN_DBOraclee1
ODBC manager

Logical hosts
- Data sources

Physical host

AMD (192.168.130.132) APPI (192.168.130.134)

Fig.5.1. Explanation of notions of logical and physical hosts

 116

IDL system). Problem domain ontology (see Fig.1.8 and also section 2.5) can be also specified one
time by use of Ontology Editor of MASDK and then used in different IF applications including IDL
one. Next step of IDL MAS specification consists in specification of the agent classes, that is
specification of the agent applied component (it is different for each agent class, see Fig.1.8). At the
same time the shared component of application ontology is specified by use of a special editor that is
now a component of Information Fusion Learning Toolkit (see section 2.3). Afterwards agent classes
are replicated into agent classes instances and installed in predefined computers of a LAN within
communication environment previously deployed (at any time) within this LAN (remind that
communication environment consists of portals installed and run in each computer in which agents of
IDLS should be deployed and server which can be installed in any computer of LAN, see section 3.1
of this Report). The resulting multi-agent IDLS can be called as "empty system" which has to be
further "filled in" by particular content that is data and knowledge interpreting particular ontology
notions, providing particular agent procedures (for example, state machines, learning and decision
making components of the software) with concrete data. Most of the above operations are done use of
MASDK software editors in accordance with the technology thoroughly described in Chapters 1 and 2
of this Report.

Thus, the initial specification of an applied IDL MAS in the System Kernel of MASDK contains
specification of the following classes of agents (see Fig.5.2 and also Chapter 3 explaining destinations
of the below agent classes):

• Data Source Manager (DSM) – class of agents that support the data source interface;
• BC – class of agents that solve the task of the input data’s basic classification;
• MC – class of agents that enable the combination of base classifiers’ decisions;
• KDD – class of agents responsible for the training of base and meta–classifiers. Functionalities

of agents of this class combine the functionalities of KDD agent of data source and KDD
meta–agent;

• KDD Master – class of agents that enable the design and specification of the Decision Fusion
meta–model and manages of the base and meta–classifiers training and testing.

Fig.5.2. User interface for initial specification of the IDLS agent classes in System Kernel of MASDK

 117

As it was above pointed out, the process of specification of the basic configuration of the applied
MAS in System kernel implies:

o replication of the instances of the corresponding agent classes, and
o designation of logical and physical hosts that determine the “space of existence” for instances

of software agents within given computer network (see Fig.5.3).
The use of the notion of logical host is necessitated by technical reasons. Relationships are defined

between physical and logical hosts, according to which, one or more logical hosts correspond to each
physical host of LAN. The use of the notion of logical hosts allows for specifying the location of

software agents in physical hosts in the IDL MAS specification given in the System Kernel.
Dialog window of MASDK shown in Fig.5.3 is used for specification of configurations of software

agents of the corresponding classes, including the indication of their location in terms of logical hosts.
In accordance with the given data sources, the configuration of the software agents’ instances of the

IDL MAS software prototype under development is formed in the following manner:
1. For each data source, one logical host and three instances (according to the number of data

sources, see Chapter 4) of software agents DSM, BС, KDD agent are specified.
2. To specify the meta–level component of IDL MAS (let us remind that meta-level component is

responsible for combining decisions of base classifiers and IDL MAS in design and operation
modes management), one or several logical hosts are specified. In each logical host, one
instance of software agents MС and KDD local is specified.

3. Agents of class KDD Master that support the management of training and decision making
processes should be located on the same logical host.

Thus, the hosts of three types may be defined in the system with the agents’ allocation to them as it
is shown in Tab.5.1. In Fig.5.4 the configuration of the IDL MAS prototype under development
specified by use of MASDK is presented within the respective dialog window of the MASDK user
interface.

Generation of software agents is preceded by the stage at which correspondence between physical
and logical hosts is established. This is done through a dialog window of MASDK shown in Fig.5.5.
Specification of instances of software agents of the DSM class is expanded at the generation stage with
the following data:

Fig.5.3. Specification of IDL MAS configuration

 118

Table 5.1. Allocation of the agents on hosts
Type of system host Necessary agent of host

DSM agent

BC agent Local data source

KDD local agent

MC agent
Meta-classification host

KDD local agent

Meta-training host KDD Master agent

• Name (identifier) of data source that the instance of agent “works with”. This name is further

used as identifier of the source;
• Name (identifier) of the instance of base classifier training agent that “works” with that data

source;
• Name (identifier) of the instance of classification agent that is tuned for working with the

aforementioned data source;
• Name (identifier) of connection to database viewed as the source in the ODBC manager.
The procedure for replication (cloning) of the mentioned instances of software agents of given

classes is conducted through a dialog window shown in Fig.5.3. To that time, an auxiliary program
Portal (see Chapter 3) must be launched on all physical hosts of the network during the generation of

Fig.5.4. Specification of the system configuration in MASDK

 119

agents.
After the generation of the instances of the agent classes, the IDL MAS operates in the

environment autonomously, i.e. independently of MASDK. In the learning mode, training and testing
of IDS classification and decision combining agents is carried out.

For the system’s operation, Portals should be run on all the system physical hosts, and the IDL
MAS agents must be launched by the command of IDL MAS server.

To start the system’s operation in learning mode (this assumes the meta-learning agent started), the
command Start system should be chosen from the list of the predefined user commands and interfaces
of that agent. At the system’s first start, after its deployment, an additional initialization protocol will
be launched automatically, which configures the system in accordance with the specification of the
existing local data sources and the system’s hosts. All the information about the system’s
configuration is distributed among the respective agents of the system, and agents switch into
operational mode, fully ready to fulfill the system’s functions.

The subsequent engineering operations are supported by Information Fusion Learning Toolkit (see
section 2.3).

5.2. Intrusion detection KDD Master Agent

5.2.1. Meta-level Ontology Editing

The process of creating the target system starts with the design of the application ontology. In the
current prototype of the system, the most simple of the developed protocols for the distributed
application ontology engineering is implemented (“top-down” operation; this protocol is specified
formally). Conceptually, this protocol consists of several steps. First, the shared application ontology
is designed by the meta-level designer (“manager of meta–level”) with the subsequent dialog with
other (distributed) designers via mediation by KDD Master Agent. The application ontology designed
by manager of meta–level is forwarded to the instances of the agents of the class Data Source
Manager (DSM), which enable the interface with particular data sources. Then, the sources’ experts
(designers working with the particular data sources) tune the interpretation functions of the
corresponding fragments of the ontology to the data sources databases.

To create the shared application ontology, the ontology editor implemented in the KDD Master
agent, is used. The editor is destined for solving the following subtasks:
• Designing and editing the shared application ontology. As a result, a specification of the notions

of the ontology, their attributes, and corresponding value domains are formed.
• Specification of the data of the local data sources in terms of the shared ontology. As a result of

this task solving for each local data source in the shared application ontology, the fragment of it

Fig.5.5. Dialog for establishing correspondence between physical and logical hosts

 120

is specified that further will be used in IDS operation with the data of that source.
• Creating and editing the ontology notions derived (secondary) properties. Solving this task

results in the creation of the list of secondary properties of the notions specified in terms of their
attributes.

• Creating and editing of the list of data classes. Solving this task results in forming the list of
classes used for the specification of the input data interpretations in terms of the labels of classes
of statuses of connections (Normal, Abnormal, etc. if any).

Before use of the ontology editor, the KDD Master agent must be activated. The ontology editor is
called from that agent through activating the command Ontology editor in the user interface.

The ontology designed is an aggregate of notions with attributes. The entities may be grouped into
equivalence classes (they are called structure classes). To determine the type of attribute, the
predefined domain “Type of attribute” is used. It contains the possible values of types of attributes
acceptable in the system.

The values of this domain are taken from the PMML (Predictive Model Markup Language)
standard. Their explanation is given in Table 5.2.

Table 5.2. Values of domain “Type of attribute of the ontology”

Value of domain Attribute’s properties

bool Boolean scale (2 possible values: True/False)

categorical Categorical scale – set of predefined unordered values

ordinal Ordered scale – set of predefined values with an order relationship imposed on
them

continuous Numerical scale

5.2.2. Editing of the Decision Fusion Meta–Model

The structure of distributed learning and classification used in IDL MAS, Decision Fusion meta–
model is used (see Chapter 1). The latter is specified by exploiting an aggregate of user interfaces
implemented in agents of class KDD Master. The respective editor that is a component of Information
Fusion Learning Toolkit (see section 2.3) is activated by the command Decision making editor.

The main window of the editor shows the list of names of classification tasks already created by
user. To specify and add the name of a new task, the fields Name, Description and Base entity are used.
Arbitrary name of the task is entered in the Name field. In the Description field, a detailed comment
for the task is entered. In the field Base entity, the notion of the application ontology is chosen, for
which the classes have been determined and specified for the classification of instances of that notion.
The notion chosen as the subject of classification will hereinafter be called “Base entity”. For one base
entity, several classification tasks may be defined in the task list; their list and hierarchy are specified
by the classification tree (see Fig.5.6). The field Entity description contains comments for the chosen
entity of the ontology formed in the description of the ontology.

For detailed description of the classification task chosen from the name list and the classification
tree, the editor is used, which is activated by the Scheme button. The user window of this editor is
shown in Fig.5.6. In the description of the classification task and the decision making scheme, the set
of classes specified for the base entity is used. In particular, in this example four classes have been
specified: Attack, Normal, Smurf attack and Other attack. The meaning of this particular classification
task lies in assigning a class of decision that corresponds to one of the leaves of the classification tree
to each instance of the base entity.

A group of fields unified by the function Add/Replace is used to specify a new node or to edit an
old node. The name of the node of classification tree is edited in the Name field. Fields Class 1 and
Class 2 show names of classes of decisions that can be made in that node (the decision corresponds to
one of the two branches of the tree stemming from it). The field Base class shows the name of the
class assigned to the base entity at the previous level of the classification tree. For example, in the tree

 121

shown in Fig.5.6, the role of Base class for the node Level2 is played by the class Attack. The name set
in correspondence to the variable Base class for the current node is also called “precondition class”.

Thus created decision tree is shown in the top right field. The bottom right field shows the set of
leaves of the created tree that corresponds to the set of possible solutions specified during the
classification of the instances of base entity.

For a single classification task, several classification schemes can be formed, each having a
corresponding classification tree. The identification of classification schemes is done based on the
name of root node of the corresponding classification tree. The example (Fig.5.6) shows one
classification tree with the root node called Main. In case several classification trees have been formed,
the top right window shows the structure of the decision making tree whose root node’s name is
selected in the field Root node.

Let us remind that names of three classes, Class 1, Class 2 and Base class, are set in
correspondence to each node of classification tree. In creating classification trees, the editor oversees
the meeting of two conditions (constraints): (1) all three names have been specified for one
intermediate node of classification tree, and those names are different; (2) for one decision making
task, there can be no two different nodes with the same class of precondition.

5.2.3. Analysis of Data Available for Classifiers Training and Testing

Classification tree considered in the previous subsection consists of a number of nodes. Each of
them corresponds to a certain decision making scheme, which includes several base classifiers and at
least one meta–classifier. This scheme is called Decision Fusion (DF) meta–model (see section 1.6.2
for details). The creation of DF–meta–model requires preliminary analysis of the input data recorded
in the databases of sources1. The process of data analysis is initiated by the button Data Source in the
dialog window shown in Fig.5.6. The data analysis process will take place for the classifiers involved
in the decision-making process in the current (under consideration) node of the classification tree.

Analysis of possibilities for choice of data: node of decision-making tree

1 Peculiarities of the methodology of allocation of training and testing samples to particular base- and meta–
classifiers were discussed in section 1.7)

Fig.5.6. Editor of the classification tree of the Decision Fusion meta-model

 122

The analysis of data by use of which the classifiers of the chosen node of classification tree will be
trained and tested is performed through the dialog shown in Fig.5.7.

The table “Data Source” shows the list of available data sources. For each of them, the following
parameters are specified: Field Min – the minimal value of the identifier of the instance of base entity
(key) recorded in the database of data source; Field Max – the maximum value of the identifier of the
instance of base entity (key) recorded in the database of data source; Field Count – the total number of
instances of base entity recorded in the database of data source.

These values are calculated through the buttons of the same names from the group of buttons Query.
Results of queries are stored in the Intrusion Detection KDD Master agent’s knowledge base and
appear in the table during further operation.

The table “Selected data sources” shows the list of data sources, with which that node “works”. As
a rule, this list comprises all the sources whose databases contain the specifications of instances of the
base entity. For each of them, in addition to the data already calculated, the following characteristics
can be obtained:

• Number of instances of the base entity, for which the first class from the description of the
chosen node of classification tree (field Count 1) is set in correspondence as the result of
classification;

• Number of instances of the base entity, for which the second class from the description of the
chosen node of classification tree (field Count 2) is set in correspondence as the result of classification.

Queries to obtain these characteristics are formed through the buttons of the same names from the
group of buttons “Selected”.

For the data sources chosen by user, the diagram is automatically created (bottom right window)
that represents a “raw top count” of the number of common instances having interpretations of base
entity in the databases of all data sources. In the diagram, sets of common instances of base entity are
shown in green, and the value of that estimate is shown in field Raw count in the lower part of the
window. Calculation of this interval is performed at the click on the button Raw count. This estimate is
calculated as the minimal number of common interpretations on all chosen data sources within the
common interval between the minimal value of the identifier in the field Max and the maximum value
on the field Min. These values are shown in fields Min common and Max common in the lower part of
dialog window.

Fig.5.7. User interface for analysis of data available for training and testing of the classifiers
corresponding to the chosen node of classification tree

 123

The exact number of common instances of base entity is shown in the group of fields “Accurate
count calculation” in the field General. Fields Class1 and Class2 show the number of common
instances of base entity interpreted respectively as the first and the second class of possible decisions
corresponding to the node of decision-making tree under consideration. These values can be calculated
after the complete lists of identifiers of recorded instances of base entity from each of the local data
sources have been obtained. Query to obtain those lists is initiated at the click on the button Accurate
count calculation and is performed with consideration to the classes of decisions.

The number of instances that belong to the same entity in different data sources is determined in
order to identify fragments of data that can be used for the training of meta– and/or base classifiers.
Here, all instances of the base entity can be used for the training and testing of base classifiers. The
scenario for putting together the list of such instances is described in the next section.

Choice of data: node of classification tree, basic classification

The choice of data for training and testing the base classifiers of a single data source starts with the
dialog shown in Fig.5.8. The dialog is opened by clicking on the button Classifiers in the dialog shown
in Fig.5.7. The name of the chosen data source is shown in the top part of the window.

The top part of the window shows particular ranges of values of keys of instances recorded only on
the corresponding data sources (the set of such instances is highlighted blue in Fig.5.7). These ranges
can be of two types: less and/or more than range of instances common to all data sources. To describe
the obtained separate ranges of instances and to further work with them, a criterion for their selection
is formed automatically. These ranges of instances will be further used for the training and testing of
base classifiers. Ranges of instances common to all data sources will mainly be used for training and
testing of meta–classifiers; however, they can also be used for training and testing of base classifiers.
In the last line of the table marked by the label Total, the total number of instances of entities is shown
for designer's information.

The data for the training of base classifiers from the range of instances common to all data sources
is described in the group of fields corresponding to Meta-level editor. In this part of the editor, user
can form, in manual or semi-automatic mode, the condition of selection for this data, and the
boundaries of the selected range of events, which are shown in the fields that are marked with label ID.

Fig.5.8. Data selection for training and testing of base classifiers

 124

By clicking the button Check condition, the number of instances for each class of the node and the
node’s total number of instances in accordance with the condition introduced by user, is calculated.

To create the selection condition in semi-automatic mode, the button Create Condition and groups
of fields for each of the target classes are used. Each of the groups of fields Class 1 and Class 2 shows
the maximum (field Мах) and minimal (field Min) value of identifiers, as well as the total number of
instances of the corresponding class. Here, the location of the marker on the scale corresponds to the
percentage of the chosen interpretations of the corresponding class of their total number. The
percentage, the value of identifier that corresponds to that percentage and the exact number of selected
instances are shown in the respective fields above the selection scale.

After the selection of data used for the training and testing of base classifiers, they need to be
divided into training and testing. This procedure takes place in a particular dialog initiated by clicking
on the button Training / Testing level. Here, the editor opens as shown in Fig.5.9.

The training and testing data are shown as descriptions of groups of data used for training and
testing of the respective base classifiers.

Each group of data can be of simple type (all selection conditions are specified by one condition) or
composite type (data is formed from several subsets, each one specified by its own selection
condition). For each of these types, the dialog provides a group of elements of interface. The type of
the sample is changed by the Simple / Composite toggle.

Regardless of the type, there are common selection conditions for data groups. They consist of two
parts. The first part is formed automatically on the basis of all existing group of training and testing

Fig.5.9. Data selection for training and testing of a classifier

 125

data for base classifiers (conditions of all levels of basic classifications are united through the logical
connective “OR”). The second part is formed by user in the interface and is always joined with the
first one by the logical connective “AND”.

If the sample is of simple type then
this condition is the only one, and it
determines the selected subset of data.
The number of instances of classes and
the total number of instances of the
sample may be obtained through sending
a query to the data sources. For that, the
button Check condition is used. The data
received from the local data source is
stored in the fields Count, Count Class1,
Count Class2.

For composite group of data, besides
the common condition, particular
selection conditions are specified for
each group of data. They are recorded in
the list in the group of fields Composite.

The selection conditions include the
name of the class and the percentage of
the records from the total number of
records, or from their explicit number.
Each condition is formed in the group of fields in the lower part of the dialog.

The table and list are updated by clicking the Add/Replace button. The condition is checked by
clicking on the Check button.

Here, a query is sent to the data source, and the results are shown in the fields Selected Count and
Total count.

5.3. Intrusion Detection KDD–Agent of a Source

5.3.1. Base Classifiers Training Scenario

The base classifier training scenario consists of a number of particular subtasks performed in a
certain order. This scenario is represented by the state machine shown in Fig.5.10. In each of its states,
the user solves particular subtasks through the appropriate dialogs. Let us consider these states:
• Main State. In this state, the dialog interface is shown, through which the training of a single base

classifier is managed and monitored.
• Scales conversion. This subtask is considered in the case if the training data contains the attributes

of the ordinal or categorical type. These attributes should be converted to the scales, for which
implemented algorithms exist in the Library of training and testing methods.

• Search for rules in favor of class. In this state, the main training subtask is solved that involves
search for rules based on the analysis of the training dataset. The search for rules may take place
several times, supplementing the set of previously found rules. The system behavior scenario in
this state is implemented through a nested state machine shown in Fig.5.11.

• Tuning of the decision-making mechanism. It is assumed that in this state, all the decision-making
rules are found for the classifier, and the general decision making mechanism that combines
decisions made by separate rules, is being tuned (specified).

• Testing of classifier. In this state, the classifier is tested and its performance is analyzed.
• Sending classifier’s description. In this state, all rules and parameters of the decision-making

mechanism are sent to the agent of base classifier.

Fig.5.10. Base classifier training scenario

Initialization

MainState
Scales

conversion

•Search for rules
in favor of class

•Tuning of the decision-
making mechanism

•Testing of
classifier

•Sending classifier’s
description

 126

5.3.2. Conversion of Features

Current task is solved in the
Scales conversion state.
Conversion of the classification
features is carried out through the
interface shown in Fig.5.12. This
task is aimed at converting the
features represented in categorical
and ordinal scales into numerical
or Boolean. The conversion is
done by user through the creation
of new features and setting
calculation functions for them that
will use the existing and
previously entered features and
attributes as arguments.

The user editor window shows
the specification of the initial
features and attributes, and that of
the ones added by user. The initial
features and attributes are shown
in different lists (the initial features
belong to the shared ontology of
the application domain, and will
never be changed by user in the
training process). For each of
categorical and ordinal features
and attributes on the training
sample data, a list of values with
the number of their respective

User interface:
Coverage checking

Temporary break
of rule search

Initialization

Testing rules

Selection of the next sample
for learning

Deletion of unused
columns and

saving of new rules

The rules for a
class in question

are got

Extraction rules
from Boolean data

Rule quality assessment
and rules selection

Rule search
is broken

VAM
procedure GK2 procedure

User interface for
analysis of features and

predicates

Transformation of
numerical scales

Analysis of features
and predicates

Adding new rules and new
predicates

End of rule search

Fig.5.11. Search for rules in favor of class state machine

Extraction rules
from temporal data

Temporal mining procedure

Fig.5.12. Editor of characteristics conversion

 127

instances can be drawn. To obtain such list of values by a selected attribute, click the Values button.
The functions for the calculation of the new characteristics are described as predicates with

arithmetic terms and functional symbols (“logical-arithmetical expressions”) that use the initial
attributes, features and their values as terms. In the process of creating these expressions, there is an
option of inserting the existing attributes, features and their values from the lists into the expression
line.

5.3.3. The VAM Method

The VAM (Visual
Analytic Mining) module
is designed for extracting
production rules1 from the
training sample
represented in real scales
(See [InterRep#2] for
details). Each of these
rules can be viewed as a
pattern, on whose basis
other rules and patterns
can be formed. Then the
obtained patterns, in
particular, are used
together with binary
features for the creation
of the classifiers’ rules
base.

The main window of
the component that implements the VAM method is shown in Fig.5.13. Left part of the window shows
the structure of the separation rules. This structure is a set of binary “trees” where each node
corresponds to one separation rule (predicate) defined over numerical features. Each tree as a whole
describes one production rule represented symbolically in the lower part of the screen.

The search for the predicate that corresponds to the node of the tree is conducted on the basis of a
subset of data selected through the predicates of the higher nodes of the tree.

The top part of the dialog shows information about the class, for which the production rules are
being formed, and information about the size of data in the training sample. At the beginning of the
training, there is only one tree with a single node that is tree’s root. In the process of training the user
may create a new tree, or continue training for the existing leaf of the tree. For the selected leaf, the
information about the number of instances of the class and the “counter-class” is shown. Clicking on
the Find Predicates button will start the procedure of searching for predicate that corresponds to the
selected leaf of the decision tree. After that, the user interface for searching and design predicates
(Fig.5.14) opens for the subset of data that corresponds to the selected node.

The search for predicate consists of two separate subtasks:
• Search for “informative subspaces” in which the data of the class are best separated from the

rest of the data, and
• Creating the separation line in the selected subspace.
The procedure of searching for informative subspaces may take place with different search

parameters specified. Each search procedure is documented as particular search task. The resulting
task list is reflected in two lists:

 Calculated sequence – list of tasks for which the search procedure has been completed;
 Non-calculated sequence – list of tasks that have not been completely solved (the procedure of

searching for informative subspaces on a large sample in a space with a high dimension may
take a long CPU time; therefore, it is implemented in such a way that it can be paused and the

1 Practically, it extracts premises for given conclusion.

Fig.5.13. Main window of the VAM component

 128

preliminary results can be saved in order to continue again at the next session of the program
operation).

The following actions need to be completed in order to form a particular search task:
• specify the name in the field Name sequence;
• specify the dimension of the sought subspace in the field Dimension. Only subspaces of

dimensions 1 and 2 are suitable for visual analysis. For subspaces of larger dimensions, the
formula for separation surface is formed automatically but the results of such “automation”
have not yet analyzed or validated because this takes a lot of efforts with regard to a task that
is not in the Project focus;

• select the subset of numerical features on which the subspace of the specified dimension will
be searched for, in the list Signs list (by default, all signs are selected);

• select one of the methods for ordering of the subspaces according to a selected measure of

Fig.5.15. Histogram for analysis of the found subspaces

Fig.5.14. Dialog for searching and forming predicates

 129

informativeness from the ones implemented in the system, in the field Method find.
Any search task from the list Non-calculated sequence can be executed by clicking on the Search
button. After the search procedure has been completed, the task will move to the Calculated sequence
list. The results of search for subspaces for any task from that list can be analyzed by clicking the
Analysis button. Here, the user will see the interface for analysis of the found subspaces. The user will
see a list of subspaces of the specified dimension ordered by the value of interclass distance (the
algorithm for calculating the distance is determined by the subspaces search method). The graphical
diagram (histogram) of that distribution can be viewed by switching to Chart in the menu. An example
of the distribution of values of interclass distance in various two-dimensional subspaces is shown as a

Fig.5.16. Dialog for creating the separation rules in one-dimensional subspaces

Fig.5.17. Dialog for creating the separation rules in two-dimensional subspaces

 130

diagram in Fig.5.15. By analyzing the search results, user chooses the best subspaces for further
analysis. After the analysis window is closed, the selected subspaces are moved to the Selected
subspaces list. User can also add other subspaces to this list using the New subspaces field without
activating the search procedure. The subspaces selected for analysis are analyzed individually. Here,
the optimal separation line is sought, and the predicate is created.

For analyzing the subspace selected from the list and for forming the predicate, the Add Predicate
button needs to be clicked on. The interface for creating the separation rules depends on the dimension
of the subspace. For one-dimensional subspaces, the interface is shown in Fig.5.16. For two-
dimensional subspaces, the separation rules finding interface is shown in Fig.5.17.

After the editing of the separation rule has been completed (or after it has been created
automatically for subspaces of dimensions higher than 2), user is asked to enter the name for the newly
formed predicate, which is added to the list of designed predicates.

The list of formed predicates shows the obtained predicates and the corresponding probabilities of
correct classification. For each predicate, full properties of classification quality can be obtained
(based on the confusion matrix) by clicking on the Get property button. After the analysis of the
obtained predicates, user can choose any one of them to be a node of the tree using Select button. Here,
the list of the tree for which the search was conducted turns into a node, and two leaves are added to it
according to the partition of data chosen by the classifier.

After the procedure for creating the predicates has been completed, and the main interface window
of VAM is activated, the resulting predicates are added to the main list, which is to be used for the final
search of the classifier’s production rules together with the initial logical attributes of the training
sample.

5.3.4. The GK2 Method

The GK2 module is designed for extraction production rules from the training data sample that
consists of logical attributes and predicates found through the VAM procedure. The main interface
window of the GK2 module is shown in Fig.5.18.

Group of fields “Source data” shows information about parameters of the initial training sample.
The rules extraction
algorithm utilized in the
module only works on
consistent data. Data are
consistent if it does not
contain coinciding data
vectors that have different
classification within a node.
However, the real input data
may contain inconsistencies
(e.g., due to limited
dimension of representation
space presented by the
vector of features used).
Therefore, before the search
for rules is initiated, the data
needs to be put through the
clearing procedure. This
procedure is initiated by
clicking the Clear data

button. The properties of data sample ready for training are shown in the group of fields Cleared data.
For the rules extraction algorithm’s operation, its parameters need to be specified in the group of

fields Search parameters:
- Rule depth - maximum length of the sought rules;
- MIN coverage - minimal coverage of the instances of the class by the rule.

Fig.5.18. The main interface window of the GK2 module

 131

The rules finding procedure is initiated by clicking on the Search rules button. The found rules are
shown in the list Rules.

5.3.5. Training Results’ Analysis

The analysis of the obtained rules is conducted through the dialog whose interface is shown in
Fig.5.19. The main tasks solved by user through that interface are:

• Analysis of the quality of the obtained rule, and
• Selection of data for continued training and obtaining new rules.
Rules are analyzed from the standpoint of probabilities of correct classification provided by them,

and the coverage of the implementations of both the training and the testing samples. The results of the
analysis of obtained rules on the training sample are shown in the top window of the dialog, and the
results of analysis on the testing sample – in the lower window of the dialog. Each of these windows
shows the complete list of the extracted rules. Here, for each of the rules obtained, the degree of its
correct classification for the class and the counter-class separately is shown graphically in a particular
table sell. All probabilities from the confusion matrix are also shown for the selected rule. Besides the
above results on each rule, the sell All Rules shows the results of integrated analysis of the entire set of
obtained rules as a whole.

The rule can be included into the classifier’s rules base by double-clicking on the appropriate cell.
If it is necessary to continue the training process, the selection of data happens in the following

manner. The desired coverage factor of data by the rules is specified in the list Selection Learning.
After that, the data (instances) that have the coverage factor in respect to the extracted rules less than
or equal to the specified value are automatically selected. Apparently, in the beginning of rules
extraction procedure, when no rules have yet been extracted, choosing data with the coverage factor of

Fig.5.19. The interface for the analysis of the extracted rules

 132

0 will coincide with the entire training sample. The position Selected indicates the results of choosing
data for further training on the diagram.

After the interface is closed by clicking on the ОК button, the obtained data are used for further
training, and the selected rules are added to the classifier’s rules base.

5.4. Meta-level Intrusion Detection KDD Agent

The main difference between the training of meta–classifiers and the training of base classifiers
lies in the fact that their training utilizes data computed by the base classifiers which decisions are
combined by the respective meta–classifier. The computation of input data for training and testing of
meta–classifiers is the function of the meta–classifier training agent that is Meta–level KDD agent. For
each meta–classifier training task, this function is represented in terms of state machine for preparing
input data and it is initiated in the Meta–level KDD agent. A diagram of the state machine states is

shown in Fig.5.20.
During the operation of the state machine, meta–classifier training agent requests training data

from the Data source managing agents. Upon the receipt of that data the state machine goes into
waiting state if at least one of the training agents of the respective base classifiers has not completed
the training process. After the training of all the necessary base classifiers has been completed, the
procedure (protocol) for forming data for the training of meta–classifier that corresponds to one data
source shown in Fig.5.21 is initiated. That procedure is executed for each of the base classifiers whose
results are being generalized by the meta–classifier in training.

The GK2 component is used for the training of meta–classifier and finding the corresponding rules.
The training results are analyzed through the rules analysis interface used in the analysis of base

classifier training.

5.5. DSM-Agents

The main task of the data source management agent is enabling direct access to data and
subsequent transformation of the data to the format of the shared application ontology. For that
purpose, the data formation state machine is specified in the agent, and its diagram is shown in
Fig.5.22.

Each DSM-agent enables access to the single data source determined through the name of the
database in the ODBC manager. The name of that data source is stored in the agent’s database. When

Training and testing data
for meta-level is prepared

Send data readiness notification

Request classifying data from
 the classifying local source

Receipt classified data

Request decisions used
classifier

Receiving used base
classifier decisionsWaiting base classifiers

training process

Fig.5.20. State machine for preparing meta-
level input data

Fig.5.21. Protocol for forming data for the
training of meta–classifier that corresponds

to one data source

Data source
managment

agent
Agent-classifier
of data source

Meta-level
KDD agent Notification

about readiness
of base classifier

The command on
preparation of dataset for

classifier decisions

Request base classifier
decision

Requested dataset
for base classifier

Requested base
classifier’s decisions

 133

the agent is started, the state machine is activated
that initiates the graph of application domain
ontology notions in the memory. Attributes of
object domain entities are leaves of that graph. In
the nodes of the graph, meta-notions and
expressions for their calculations are specified.
Connections to the nodes of the lower level
indicate the notions of the application domain
ontology that are involved in the expression.

The tuning of the ontology of object domain
notions of the data access agent is conducted by
the database administrator. Here, his/her task is
creating the VIEW objects in the database with
fields that correspond to the attributes of notion
(notions) of the object domain, and the notion
instance identifier field. The dialog initiated
through the command Open DB Gateway editor
is designed for the tuning of the agent’s interface
with an external database. The left part of the

dialog window shows all entities and attributes of
the object domain ontology that are described in the

current data source. The right part of the window shows the list of objects of the database and their
specifications. Through the appropriate buttons, administrator may establish correspondence between
notions and attributes of the application domain ontology and the object of the database.

5.6. Testing of the Designed IDS Prototype and Assessment of Learning Quality

5.6.1. Peculiarities of Training and Testing Data and Respective Procedures

The meta-classification procedure described in Chapter 1 possesses certain peculiarities entailed by
the fact that IDS is a real-time system and different base classifiers make their decisions concerning
the same connection at different time. This peculiarity entails specificities of both forming meta-
learning data and meta-classification (decision making in meta-level) procedures.

Let us consider the question of how meta-data are computed and what new problems have to be
resolved in organization of these computations. While using meta–classification approach, the meta-
data is composed of the decisions of the base classifiers which decisions are combined in meta–level
by meta–classifier. Since intrusion detection is real-time procedure and output of classifiers are
presented as flow of decisions, the time of occurrence of some events can be applied as an attribute
used for identification of the decisions that has to be composed in a meta-data instance.

An event is understood as appearance of new decisions of base classifiers in its output stream of
decisions represented in the format <Decision of base classifier X, Time of decision producing>.

Each base classifier makes its decision at the time when it receives all the data needed for making
decisions and it does not produces decision if the required data are incomplete. This means that at a
time some base classifiers have already produced decisions but other one not. Therefore, to combine
decisions, it is necessary to wait the latter. At the same time, each decision has its own life time and it
can be assessed as outdated to the time when other decisions constituting meta–data have made.

Thus, this leads to the following formal model of meta–data:

(1) K base classifiers 1BC – KBC which output is represented as a stream of decisions at the
ordered by random time moments;

(2) Events of the output stream of each particular base classifier are assigned by "life time"
1TL – KTL and if it is not used within the respective time interval then the respective

event is assigned "Null".

Initialization

Agent operation
is finished

Initialize of ontology
notion graph

Producing of dataset by definition

Main state Producing of DB
characteristic

Definition of dataset
exist

Request of local DB
characteristic exist.

Change of ontology

Fig.5.22. Data formation state machine

 134

Explanation of the above model can be found in Fig. 5.23. This means that it is necessary to use a
particular way to compose the decisions in the instance of meta-data. In general case, this question
should be carefully analyzed but we will use the simplest of strategy. It is as follows:

If an event occurs in a base classifier then all other ones submit to meta-level its latest decisions
of their decision streams. At that, if iievent TLTT ≤− (i-the number of base classifier, T–the

current value of time, TL–some “outdating time” constant) then the decision of the respective
classifier is missed (it is outdated).

Let us use this strategy of composing meta-data from particular base classifiers' decisions.
In the developed Meta-model of decision fusion, different classifiers are presented. Their

peculiarities are briefly as follows:
(1) For classifiers that use information of network level (stream of packet headers, data aggregated

per 5 seconds and aggregated data per 100 connections): an event occurs when connection is
completed. In turn, completion of such an event can occur in two cases that are (1) the connection is
completed normally and Operating system fixes this completion and (2) it is "completed" due to
timeout after same waiting period. The second case takes place for SYNFlood attack presented in the
case study. Since duration of a particular connection corresponding to SYNFlood attack can be long
enough (as compared with the dynamics of connections stream) and its particular connection looks
like normal connection it does not influence on the decisions of the respective base classifiers. This
attack can be only detected in higher levels of data abstraction considering attacks carrying out in
several connections.

(2) For classifiers that make decisions of the basis of aggregated data per a number of connections:
In these classifiers input events occur at the time of beginning of a connection and classifiers'
capabilities of various attack detection depends on the "width T∆ of the sliding window" and shift ∆
In the case study used in this Project T∆ =100 and ∆ =1 for the data sample of network-based level
and T∆ =30 and ∆ =3 in application-based level.

Connections, BCconn

Aggregation in 5 sec., BCagreg5sec

Aggregation in N connections. BCagregNconn

t

T1 TK

Event 1 initiated by
completion of 5sec.

time period.

Event K initiated
by completion of

a connection.

∆T< TlifeBCconn

∆T< TlifeBCagregNconn ∆T< TlifeBCagregNconn

∆T> TlifeBCagreg5sec.

T Value BCconn Value BCagreg5sec Value BCagregNconn
T1 Value exists Value exists Value exists
TK Value exists NULL Value exists

Fig.5.23. Explanation of the model of meta-data for training and testing of meta-classifier

 135

(3) For classifiers that make decisions of the basis of aggregated data per time period: their
capabilities of various attack detection depend on the width T∆ of time window and shift ∆ . In the
case study used in this Project T∆ =5 seconds but ∆ is variable in terms of time but this time is equal
to the time interval between two adjacent connections.

(4) For meta-classifier, an important note concerns to the assumptions used in computing of meta–
data used for training and testing. They are as follows:

–If decision of a base classifier is absent (NULL) then such meta–data is excluded from
training and testing sample of meta-data. We are forced to accept this assumption because
the software capable to mine data with missing values is absent in the library of training and
testing data1;

–In the strategy used in the developed Prototype outdating time iTL is equated to eternity for
all base classifiers.

(4) In each instance of meta–data additional Boolean features are added that indicate an event
triggered the meta–classifier to make a decision and they can be of three types, i.e. initiating meta–
classifier to make decision. For example, the senses of these features in network-based level are as
follows:

– InitConn – decision making of base classifier was triggered by connection completion;
– Init5sec – decision making of base classifier was triggered by completion of time interval of 5

second;
– Init100conn – decision making of base classifier was triggered by completion of interval

containing 100 connections.

5.6.2. Description of Training and Testing Results and Evaluation of Classification Quality

Let us comment the results of training and testing carried out by the developed software prototype
of IDL MAS. Let us start from such comments for the base and meta–classifiers of the network level.

Meta–classifier of this level uses the decisions of three base classifiers that are BK_ConnAgreg,
BK_ConnPacket and BK_Agreg5sec. The objective of the classification on the basis of the network-
based data sources is to distinct “Normal” connections from "Abnormal" ones (see Fig.5.24). The
resulting probabilities of perfect classification of the best base classifier are 0.73 (over training
sample) and 1,0 (for the testing sample). At that, the same probabilities for meta–classifier are 0.81
and 1,0 respectively. Let us comment the cases of false positives (missing of attacks) of the meta–
classifier. Over the training sample this probability is equal to 0,04 and for the testing sample it is
equal to 0,02. The total number of cases in which meta–classifier made such incorrect decisions is
equal to 15 (over both training and testing samples). In 11 cases, FTPCrack attack was missed but the
rest 57 cases of this attach were detected by meta-classifier as suspicious connections that is why these
cases are determined correctly as Abnormal. The same concerns to 1 case SYNFlood attack. 3 cases of
the PipeUpAdmin attack were completely missed by meta-classifier handling with network level data
sources. This means that it is necessary to use other than network level data sources, for example,
host-based data source (audit trail of Operating System). An additional note is that this attack
practically has to be considered as preparation phase to an attack carried out according to a scenario in
which this attack is a step. Network-based level presents no evidences of PipeUpAdmin attack.

Let us further comment the training and testing results of the base and meta-level classifiers which
make decisions of the basis of the data sources of the application-based level, particularly on the basis
of data sources representing performance FTP server (see Fig.5.25). Note that these data sources were
used to provide the IDS system with the capability to detect the FTPCrack attack.

The highest values of the probabilities of perfect classifications provided in this level by a base
classifier are equal to 0,86 (over the training sample) and 1,0 (over the testing sample). At that the
respective values provided by the meta-classifier of the application-base level are 0,87 and 1,0
respectively.

1 A technique that is capable to learn from data with missing values is developed and tested but not implemented
in the form required to be included in the library.

 136

Let us comment the cases of false negatives (missing of the attack cases) by meta–classifier. The

total probability of false positives is equal to 0,03 over the training sample and 0 over the testing one.
In total 1 case was missed. It corresponds to the first connection of those composing this attack. The
attack is determining by this time after the second connection. Since FTPCrack cannot be completed
by the first connection then this cannot be completed this attack can be determined in advance thus
making it possible to prevent its dangerous consequences.

The total number of false positives (false alarms) is equal to 17 and all of them occurred on training
data sample. Thus, the probability of false positives is equal to 0,18 over training data sample and 0
over testing one. All these cases correspond to 8 connections which immediately following FTPCrack
attack being performing from the same hosts as the hosts from which these attacks were performed.

Fig.5.24. Software prototype developed on the basis of network layer data for Abnormal recognition: The
probability of perfect classification of the IDS on testing dataset of size of 789 is equal to 0,98

0

500

1000

1500

2000

2500

Training Testing Full

Co
un

t o
f d

at
a

Normal Normal as Attack
Attack recognized Attack non recognized

Fig.5.25. Software prototype developed on the basis of FTP server’s data for FTPCrack attack recognition:
The probability of perfect classification of the IDS on testing dataset of size of 138 is equal to 1,00

0

50

100

150

200

250

300

Training Testing Full

C
ou

nt
 o

f d
at

a

FTPURLCrack FTPURLCrack non recognized
Normal Normal as FTPURLCrack

 137

5.7. Conclusion

The Chapter describes the implemented software prototype implementing the main components of
IDLS and presents some simulation results demonstrating the practical use of the developed IDL
methodology, technology and supporting software tool.

According to the technology implemented in order to build an IDL MAS (including IDS and IDLS)
as applied Information Fusion MAS, the former is firstly specified in the System Kernel of the
MASDK by making use of Generic agent as a template for specification of agent classes. In parallel
problem domain ontology of IDL is also specified. Next step consists in specification of the IDS and
IDLS agent classes and the shared component of application ontology. Then agent classes are
replicated into agent classes’ instances and installed in predefined computers. The resulting IDLS has
to be further “filled in” by particular content (data and knowledge interpreting particular ontology
notions, providing particular agent procedures with concrete data). After that the IDL MAS operates in
the environment independently of MASDK. In the learning mode, training and testing of IDS
classification and decision combining agents is fulfilled.

In accordance with the given data sources, the configuration of the software agents’ instances of the
IDL MAS software prototype is formed in the following manner: (1) For each data source, one logical
host and three instances (according to the number of data sources) of software agents DSM, BС, KDD
agent are specified; (2) To specify the meta–level component of IDL MAS, one or several logical
hosts are specified. In each logical host, one instance of software agents MС and KDD local is
specified; (3) Agents of class KDD Master that support the management of training and decision
making processes are located on the same logical host.

The base classifier training scenario by the KDD–agent of a source consists of a number of
particular subtasks performed in a certain order: Scales conversion to the scales, for which
implemented algorithms exist (if the training data contains the attributes of the ordinal or categorical
type); Search for rules in favor of class; Tuning of the decision-making mechanism; Testing of
classifier; Sending classifier’s description to the agent of base classifier.

The training of meta classifiers is based on usage of data computed by the base classifiers which
decisions are combined by the respective meta classifier. The computation of input data for training
and testing of meta classifiers is the function of the Meta level KDD agent.

The main task of the data source management agent is enabling direct access to data and
subsequent transformation of the data to the format of the shared application ontology.

In experiments with the software prototype of IDL MAS components the following meta-
classification and data fusion model is realized: (1) K base classifiers are used which output is
represented as a stream of decisions at the ordered by random time moments; (2) If an event occurs in
a base classifier then all other ones submit to meta-level its latest decisions of their decision streams;
(3) Events of the output stream of each particular base classifier are assigned by some “life time" and
if it is not used within the respective time interval then the respective event is assigned “Null”.

The analysis of the testing results of the developed software prototype allow to conclude that the
agent-based approach to IDL and developed methodology, technology and software tool constitute a
promising starting platform for further research and development of the prospective IDLS. The
developed software prototype of IDL MAS showed, for instance, the following results: (1) The
probability of perfect classification on testing dataset of size of 789 on the basis of network layer data
for Abnormal recognition is equal to 0,98; (2) The probability of perfect classification on testing
dataset of size of 138 on the basis of OS and application layers for FTPCrack attack recognition is
equal to 1,00.

 138

Project Conclusion

The objectives of the Project, as it was formulated in the Work Plan, were development of the
formal model, architecture, and software prototypes of the basic components of the intelligent Multi-
agent Learning System intended to provide adaptability of the intrusion detection system (IDS) to the
unknown attacks against computer network.

In other words, the Project objective was to find the answer on the question: Which advantages
are provided by use of the multi-agent technology in intrusion detection learning system and to prove
the answer via practical development the respective mathematical basis, architecture and technology
for intrusion detection learning (IDL). The preliminary motivation of use of multi-agent technology in
the scope of interest is given in the introductory chapter of this Report that is Chapter 1.

We focused our research on the development of such components of security systems that provide
the possibility “to learn detection of new attacks and counter-measures in a semi-automatic mode in
order to eliminate, as much as possible, the manual and ad-hoc elements from the process of building
an intrusion detection system” [Lee-98]. Thus, it should be emphasized that one of the main
requirements to intrusion detection rules formed by such learning components is supporting
identification of novel attacks and also exhibition of a low false positive rate.

The contemporary studies on data mining for intrusion detection and IDLS prototyping show that
existing approaches and techniques cannot completely cover the needs of IDL and one of the most
promising approaches to IDSs development is to consider them as a particular case of data and
information fusion systems. An important peculiarity of such a view of intrusion detection is that
computer network security situational awareness results from composition of decisions produced on
the basis of particular data separately providing only partial awareness. But there is lack of researches
which practically follow this paradigm. Our research is exactly focused on the development of IDLS
components based on use of data and information fusion principles and built as multi-agent system.

Formally, IDL task considered in the Project as an application of the general Knowledge Discovery
from Databases (KDD) and data and Information Fusion (IF) problem, but it is very specific and
differs in many respects with regard to the most "traditional" KDD and IF applications. The main
specific properties are as follows:

1. Formidable diversity of attacks (a great deal of existing attack types and diversity of ways of
their implementations, increasing number of newly being invented attacks);

2. Multiplicity and diversity of data sources reflecting user’s activity (information can be got from
numerous heterogeneous sensors monitoring input traffic, audit trails, operational system, servers,
applications, directories, databases of user profiles, etc.);

3. Large size and dimensionality of learning data (sensors measure and/or compute numerous
characteristics in high frequency real-time mode);

4. Diversity of data sources from several viewpoints (IP-packets and their components, symbolic
data measured or computed in categorical, Boolean and real-valued scales, temporary ordered
sequences and subsequences of events with many attributes, data represented at different
generalization level, data derivative due to raw data preprocessing and also high-level computations);

5. Data coherency problem that is understood as the necessity to identify the records of data of
different sources associated with the same connection and representing the same “example“ of user’s
activity (e.g. associated with the same attack).

Thus, in the Project, IDS is considered as multisensor knowledge-based IF system. The respective
IDL is considered as distributed multi-level data mining and knowledge discovery problem to be
implemented on the basis of multi-agent architecture.

The following particular results have been planned to receive within the scope of the Project:
• learning task ontology, allocation of learning tasks over generic learning agents and

development of the architecture of their interaction within Multi-agent Learning System;
• mathematical basis and algorithms realizing learning functionalities of the particular agents;

 139

• software prototypes of the components of the Multi-agent Learning System based on
theoretical results of the research;

• simulation-based evaluation of the properties, advantages and disadvantages of the developed
multi-agent model and architecture of the Multi-agent Learning system aimed to support
adaptability and learnability of the Computer Network Security System.

All the tasks provided by the Project and scheduled according to the Work Plan are successfully
solved and its results make it possible to positively answer on the question formulated above.

The developed methodology and technology of multi-agent intrusion detection learning based on
data and information fusion paradigm can be used in contemporary IDS. It takes into account main
specific properties described above.

The main conclusions based on the results received in the Project can briefly be formulated as
follows:

1. The main peculiarities of intrusion detection learning technology result from distributed nature
and heterogeneity of audit data (see Chapter 1). The traces of illegitimate activity of users are reflected
in multiple distributed and heterogeneous data sources. The data can be represented in different data
structures and measured in different measurement scales, be of different accuracy and reliability, they
may be incomplete and uncertain, and contain missing values, etc. These properties put specific
problems within IDLS design and implementation (combination of these problems composes a so-
called “data non-congruency problem”): monosemantic understanding of the terminology used by
different components of IDLS, entity identification problem, problem of diversity of data
measurement scales of training data components, non-coherency of data measurement scales problem,
etc.

2. The peculiarity of our multi-agent technology for IDL is that it is a specialization of a technology
developed for the design and implementation of more general class of information fusion systems (see
Chapter 1). The basic components of the methodology concerns such particular components of the
data and information fusion systems as (1) Ontology, its roles, structure and its interconnection and
communication with distributed data and knowledge bases; (2) Structure of decision making and
decision combining specified in terms of Decision Fusion meta–model that is constituted by
classification tree (in the top level) and by the set of Decision making trees each of which is mapped to
a node of classification tree; (3) Structure of distributed knowledge base which is constituted spatially
distributed decision makers (base classifiers in the bottom level and meta–classifiers destined for
decision fusion). Each such a classifier is provided with a local knowledge base that is structured
according to the Decision fusion meta–model. The top level of the distributed knowledge base is
constituted by the application ontology considered as meta–knowledge; (4) A multitude of techniques
used for training and testing of classifiers constituting Decision making meta–model; (5) Two
different techniques used in decision combining (fusion) procedures; (6) Training and testing
methodology; and (7) Methodology of Allocation and Management of Training and Testing Datasets.
The above components of the methodology of IDL engineering constitute the conceptual basis,
determine the necessary algorithms and also generic architecture of the applied multi-agent IDLS.

3. The developed technology of multi-agent data and information fusion systems engineering,
implementation and deployment supposes that IDS and IDLS (as applied MASs) are designed by use
of two software tools that were developed by authors of this Report. These software tools are Multi-
agent System Development Kit (MASDK) and Information Fusion Learning Toolkit. These tools
compose the set of components destined for support of IDL MAS design technology and thus together
they constitute software tool for IDL MAS technology support. The first toolkit, MASDK, mostly
supports engineering, implementation and deployment of the reusable components of IDL MAS that
weakly depend on the particular application domain. The second one, Information Fusion Learning
Toolkit, is responsible for engineering of the domain and application-dependent components of IDL
MAS.

One of two main components of MASDK is so-called “generic agent” while the second one is
composed of a number of editors destined for specialization of “generic agent” according to particular
application in design. Use of such an approach to multi-agent system design leads to very flexible

 140

technology in which the target MAS is specified formally in a language (this specification is called
MAS “System kernel”) and afterwards deployed (installed) within a computer network. In case of
necessity of MAS modification the designers can do this through modifying specifications of the
respective components of the system in the System kernel with the subsequent re-generating of the
software agents. The main peculiarity of the technology part supported by Information Fusion
Learning Toolkit is that the latter actually implements a novel kind of IF technology that can be
reasonably called "agent-mediated technology". This class of technology assumes that design of IDL
MAS is performed by distributed collaborating designers which is activity mediated by a number of
agents specifically destined for support of collaboration of designers and dismiss them from a number
of routine engineering operations.

4. The training and testing data for IDL are historical interpreted audit data containing sequences
of users' activity (“cases”) that can correspond to “normal”, “abnormal” and “interpreted abnormal”
data (in the last case it is supposed that the class of attack is determined definitely). In order to
construct an efficient IDL MAS, it is necessary to utilize an interconnected complex of audit data
received from multiple sources and representing data from different levels of generalization (on the
network, OS, application, and additional sources levels). Addressing multiple information sources may
significantly increase the validity of decisions related to attack detection and network security.

The taxonomies of these data sources can be formed by different tags (see Chapter 1): (1) The
taxonomy, which classifies data sources due to location of source and software generating data,
includes the network-based sources (depending on network layers and used protocols) and host-based
sources (represented by operating system audit trail, system logs, and application-related audit data);
(2) The taxonomy, which classifies data sources due to processing level, consists from primary sources
(network traffic, host command (system calls) traffic, etc.), preprocessed sources (tcpdump (for
packets), preprocessed OS audit trail, system logs, and audit data of different applications), and
generalized sources (generated by statistical processing of preprocessed sources); (3) The taxonomy,
which classifies data sources due to an object, with which the data are associated, is based on the
network-based sources (packets, connections, all network traffic) and host-based sources (traffic
within a connection, processes, users, files and directories, disks, system registry, etc.).

Four typical structures of data that can be used in IDL task: Time-based sequential (temporal) data,
Sequential (ordered) data, Relational (non-sequential) data, and Transactional data. The typical
measurement scales of ID learning data are as follows: Binary (or Boolean), Categorical, Linear
ordered, and Real.

The complexity of attack detection learning mechanisms can be significantly reduced through the
preliminary analysis and identification of the most representative and informative attributes of
computer network users' activities that are registered in the audit data. Among such attributes are
repeated patterns of events, mistyped commands, indications of exploitation of the known
vulnerabilities, illegal parameters, irregularities in the network traffic parameters and contents,
substantial discrepancies in the values of attributes that characterize the system subjects' operations
profile and unexplained problems (see Chapter 1). Involvement of experts at this stage of learning
could substantially cut down the pattern search and dimensions of data needed for learning.

5. The basis of the IDL problems solutions is many-aspect usage of ontology. Consistent operation
of a large scale distributed system, which makes decisions in a knowledge-based fashion, can be
provided in case if agents making up the system are able to “understand” each other. The efficient way
to achieve mutual understanding of agents is to use ontology-based approach representing the shared
knowledge of distributed entities that form the necessary basis for local knowledge bases consistency,
distributed knowledge base integrity and correct interpretation of the messages, which entities
exchange with (see Chapter 1). The multi-level ontology of the IDL problem unites a structured
multitude of basic notions. This ontology encompasses the notions from several subject domain
ontologies, namely, “Data Fusion and Data Fusion Learning problem domain ontology”, “Intrusion
Detection application ontology” and “Intrusion Detection Learning application ontology” (see Chapter
2). The proposed technology for development and implementation of application ontology supports
the development of shared and private components of application ontology that are “coherent” with
the intrusion detection problem ontology. The ontology developed serves as a basis for design and

 141

implementation of the upper-level representation of distributed knowledge base of IDL MAS. This
level of knowledge provides, on the one hand, integrity of the distributed knowledge base, and on the
other hand, “mutual understanding” of the agents interacting via message exchange.

6. The multitude of methods that covers the needs of IDL task includes methods for combining
decisions produced by base-level classifiers on the basis of different data sources containing fragments
of information about status of host operation security, and also data mining and knowledge discovery
techniques that are used for training and testing of base-level classifiers (see Chapter 1). Although a
lot of methods of data mining and knowledge discovery developed for different types of data structure
exist, four basic methods were selected. The selection is based on analysis of data structures that can
be perceived or computed within a host with the purpose of analysis of this host security status. The
selected methods are: FP-growth method of frequent patterns and association rules mining aiming at
extraction of useful patterns from transactional (sequential) data; VAM (Visual Analytical Mining)
aiming at mining rules and other kinds of pattern from numerical data; GK2 algorithm aiming at
mining discrete data, and temporal data mining algorithm aiming at mining rules from temporal
sequences of binary and/or numerical data.

7. In the developed technology Intrusion Detection Learning and Intrusion Detection procedure
itself can be considered either as components of a single system possessing off–line learning
capabilities, or they can be considered as the tasks of different systems. In the last case IDL system
plays the role of an auxiliary system needed only in design and implementation stages of IDS
development (see Chapter 3).

The IDS is viewed as a multisensor multi-level IF system. This system makes decisions on the
basis of a multi-level model of processing of input data (network input traffic and/or audit data). The
learning technology and respective interaction of both components of IDL MAS is developed in depth,
implemented and validated. Multi-agent architecture of IDL MAS consists of two kinds of
components: (1) Local data source components responsible for operating with particular data sources
and (2) Meta-level component responsible for coordination of the performance of component of the
first type and also for management of creation of global coherent problem ontology, shared and private
components of application ontology, and also for combining decisions of source-based classifiers at
meta-level. Local data source components of the system comprise the following parts: Data source
managing agent responsible for design of its own private and shared parts of application ontology and
their co-ordination with the problem ontology; KDD agent responsible for training and testing of the
classification agents of IDS associated with the local data source, learning meta-classifier(s) and/or
referee(s) of the local data source; Local classification agents producing decisions on the basis of the
local data source; Server (library) of learning method that comprises a multitude of KDD methods,
metrics for evaluation of the learning quality and other functionalities associated with the solving of
knowledge engineering tasks; Local database and user interface providing interactive mode of its
operation. The architecture of the meta-level component comprises the following agents: KDD Master
agent responsible for design and consistency maintenance of global IDS ontology, realization of a
protocol of the local ontology coordination, analysis of local source data structures, support for
classification tree design, support for combining decision tree design, setting and passing to the
respective data sources the KDD tasks to be solved locally, and management of training and testing
data; Meta-level KDD agent aiming at solving the tasks of training and testing of agent performing the
task of-meta-level; Agent-classifier of meta-level that stores meta-level knowledge base created by
Meta-level KDD agent, receives decisions from local source-based agents of DF system and produces
top-level decision; Server (library) of KDD methods that stores KDD methods, metrics for evaluation
of the learning quality and other functionalities needed for operation of Meta-level KDD agent; user
interface providing interactive mode of its operation. In the multi-agent IDLS the “data non-
congruency problem” is solved due to usage of Data source managing agents (associated with the
particular data sources) and KDD master agent (which is a component of meta-level part of multi-
agent system). The idea of using in IDLS architecture agents of such kinds is new and seems
promising.

8. The case study for IDL has been specified (see Chapter 4). To generate training and testing data
four types of attack categories were selected: Probing; Remote to local (R2L); Denial of service

 142

(DOS); User to root (U2R). The exemplars of attacks selected for case study are SYN-scan, FTP-crack
attack, SYN flood, and PipeUpAdmin. We have chosen three data sources for training and testing
data: network-based (traffic level), host-based (operating system level) and application-based (FTP-
server level). Each data source was represented by four generic data structures: (1) Time ordered
sequence of values of binary vectors of parameters specifying significant events; (2) Statistical
attributes of particular connections (performance of a user); (3) Statistical attributes of traffic (users'
activity) during the short term time intervals; (4) Statistical attributes of traffic (users' activity) during
the long term time intervals.

9. The software prototypes of Intrusion Detection Learning Components were implemented (see
the Chapter 5). In accordance with the given data sources, the configuration of the software agents’
instances of the IDL MAS software prototype is formed in the following manner: (1) For each data
source, one logical host and three instances (according to the number of data sources) of software
agents DSM, BС, KDD agent are specified; (2) To specify the meta–level component of IDL MAS,
one or several logical hosts are specified. In each logical host, one instance of software agents MС and
KDD local is specified; (3) Agents of class KDD Master that support the management of training and
decision making processes are located on the same logical host. The software code is being written in
Visual C++, Java, KQML and XML implementing multi-agent IDLS basic components is currently in
progress of debugging.

10. The main results, recommendations and conclusions of the developed architecture and
mathematical methods implemented were performed for some particular components of IDLS (see the
Chapter 5). The detailed description of the simulation procedure and respective intermediate and final
results is given in the Section 5.6 and Appendixes 1 and 2. The analysis of the testing results of the
developed software prototype allow to conclude that the agent-based approach to IDL and developed
methodology, technology and software tool constitute a promising starting platform for further
research and development of the prospective IDLS. The developed software prototype of IDL MAS
showed, for instance, the following results: (1) The probability of perfect classification on testing
dataset of size of 789 on the basis of network layer data for Abnormal recognition is equal to 0,98; (2)
The probability of perfect classification on testing dataset of size of 138 on the basis of OS and
application layers for FTPCrack attack recognition is equal to 1,00.

Thus, all the tasks supposed by the Project and indicated in the Work Plan are solved. The main
Project results are methodology of intrusion detection learning, IDL ontology, mathematical
algorithms realizing IDL, multi-agent architecture of IDL MAS, technology destined for IDL,
implementation and deployment of software prototypes of the IDLS components, and simulation-
based evaluation of the properties, advantages and disadvantages of IDL MAS.

The research according to this Project proved the advantages of use of multi-agent and approach,
architecture and engineering technology as applied to the IDL task.

Future research has to concern new phase of opposition of malefactors and computer network
assurance systems. The new bias in this area is that the new danger is associated with distributed (in
space and time) and stealthy attacks which are currently of great concerns. This bias requires
fundamentally new view of intrusion detection algorithms and means. Actually, this new state of the
art in attack organization requires development of scenario-based formal models of distributed and
stealth attacks as well as approaches to recognition of such attacks. Practically this means that a new
dimension has to be added to the model of intrusion detection and intrusion detection learning tasks.
To solve this task, advanced architectures, approaches, formal frameworks, models and particular
techniques are needed. They must constitute a new phase of the research in the intrusion detection
scope.

 143

Publication of the Project Results

1. V.Gorodetski, O.Karsaev, I.Kotenko, A.Khabalov. Software Development Kit for Multi-agent Systems
Design and Implementation. International Workshop of Central and Eastern Europe on Multi-agent Systems
(CEEMAS-2001), Krakow, Poland, September 2001.

2. V.Gorodetski, O.Karsaev, I.Kotenko, A.Khabalov. Software Development Kit for Multi-agent Systems
Design and Implementation. B.Dunin-Keplicz, E.Navareski (Eds.), From Theory to Practice in Multi-agent
Systems. Lecture Notes in Artificial Intelligence, Vol. # 2296, pp.121-130, 2002.

3. V.Gorodetski. Multi-agent Data Fusion: Design and Implementation Issues. 5th International Conference on
Information Fusion (Fusion-2002), Proceedings of the section "AFOSR Information Fusion Initiative".
Annapolis, MD, USA, July 8-10, 2002. Abstract

4. V.Gorodetski, O.Karsayev and V.Samoilov. Multi-agent Data Fusion Systems: Design and Implementation
Issues. Proceedings of the 10th International Conference on Telecommunication Systems - Modeling and
Analysis, Monterey, CA, October 3-6, vol.2, pp.762-774, 2002.

5. V.Gorodetski, I.Kotenko The Multi-agent Systems for Computer Network Security Assurance: frameworks
and case studies. IEEE ICAIS-02. IEEE International Conference “Artificial Intelligence Systems”.
Proceedings. IEEE Computer Society. 2002. P.297-302.

6. V.Gorodetsky, O.Karsaeyv, and V.Samoilov. Distributed Learning of Information Fusion: A Multi-agent
Approach. In Proceedings of the International Conference Fusion 03. Cairns, Australia, July 2003.

7. V.Gorodetsky, O.Karsaeyv, and V.Samoilov. Multi-agent Technology for Distributed Data Mining and
Classification. In Proceedings of the IEEE Conference Intelligent Agent Technology (IAT03), Halifax,
Canada, October 2003.

8. V.Gorodetsky, O.Karsaeyv, and V.Samoilov. Software Tool for Agent-Based Distributed Data Mining. In
Proceedings of the IEEE Conference Knowledge Intensive Multi-agent Systems (KIMAS 03), Boston, USA,
October 2003.

9. V.Gorodetsky, O.Karsaeyv, and V.Samoilov. Multi-agent Data and Information Fusion Architecture,
Methodology, Technology and Software Tool. Accepted for publication in the book "Data Fusion for
Situation Monitoring, Incident Detection, Alert and Response Monitoring". E.Shakhbasyn and P.Vallin
(Eds.). To be published in Kluwer Academic Publishers.

10. V.Gorodetsky, I.Kotenko, O.Karsayev. The Multi-agent Technologies for Computer Network Security:
Attack Simulation, Intrusion Detection and Intrusion Detection Learning. The International Journal of
Computer Systems Science & Engineering, 2003, No 4, P.191-200.

Additionally, it was published 6 papers in the conferences proceedings and journals in Russian.

 144

References
[Adamo-00] J.-M. Adamo. Data Mining for Association Rules and Sequential Patterns. Springer Verlag. 2000.
[Adamo-01] J.-M. Adamo. Data Mining for Association Rules and Sequential Patterns : Sequential and Parallel

Algorithms. Springer Verlag. 2001
[AgentBuilder-99] AgentBuilder: An Integrated Toolkit for Constructing Intelligent Software Agents. Reticular

Systems, Inc. Revision 1.3, 1999, http://www.agentbuilder.com.
[Agrawal-95] R. Agrawal. Mining Generalized Association Rules. Proceedings of the 21st VLDB Conference,

Zurich, 1995.
[Ali et al-96] K.M.Ali and M.J.Pazzani. Error reduction through learning multiple descriptions. Machine

Learning, 24(3), 173-202, 1996.
[Amoroso-99] E.Amoroso. Intrusion Detection: An Introduction to Internet Surveillance, Correlation, Traps,

Trace Back, and Response. Intrusion.Net Books (1999).
[Apap et al-02] F. Apap, A. Honig, S. Hershkop, E. Eskin, S. J. Stolfo. Detecting Malicious Software by

Monitoring Anomalous Windows Registry Accesses. Proceedings of the Fifth International Symposium on
Recent Advances in Intrusion Detection (RAID-2002). Zurich, Switzerland: October 16-18, 2002.

[Bace-00] R.Bace. Intrusion Detection. Macmillan Technical Publishing (2000).
[Barbara et al-01a] D. Barbara, N. Wu, S. Jajodia, Detecting Novel Network Intrusions Using Bayes Estimators,

Proceedings of the First SIAM Conference on Data Mining, Chicago, IL, 2001.
[Barbara et al-01b] D. Barbara, J. Couto, S. Jajodia, L. Popyack, and N. Wu. ADAM: Detecting Intrusions by

Data Mining. IEEE Workshop on Information Assurance and Security, 2001.
[Bass-00] T.Bass. Intrusion Detection System and Multisensor Data Fusion: Creating Cyberspace Situational

Awareness. Communication of the ACM, vol.43, No. 4, pp.99-105. 2000.
[Bay et al-00] S.D.Bay and M.J.Pazzani. Characterizing model error and differences. Proceedings of 17th

International Conferenceon machine learning (ICML-2000), Morgan Kaufmann, 2000.
[Bee-gent-00] Bee-gent Multi-Agent Framework. Toshiba Corporation Systems and Software Research

Laboratories. 2000, http://www2.toshiba.co.jp/beegent/index.htm.
[Bekkerman et al-03] R. Bekkerman, R. El-Yaniv, N. Tishby, and Y. Winter. Distributional Word Clusters vs.

Words for Text Categorization. Journal of Machine Learning Research, V.3, March 2003. P.1183-1208.
[Bengio et al-03] Y. Bengio, N. Chapados. Extensions to Metric-Based Model Selection. Journal of Machine

Learning Research, V.3, March 2003. P.1209-1227.
[Birkhoff-63] G.Birkhoff. Lattice Theory. Providence, Rhode Island, 1963.
[Bloedorn et al-01a] E. Bloedorn, A. D. Christiansen, W. Hill, C. Skorupka, L. M. Talbot, J. Tivel. Data Mining

for Network Intrusion Detection: How to Get Started. Conference on Data Mining (SDM 2001), Chicago.
2001.

[Bloedorn et al-01b] E. Bloedorn, L. Talbot, C. Skorupka, A. Christiansen, W. Hill, and J. Tivel. Data Mining
applied to Intrusion Detection: MITRE Experiences. The 2001 IEEE International Conference on Data
Mining. 2001.

[Booch et al-00] G.Booch, J.Rumbaugh, and A.Jacobson. The unified modeling language user guide. Adison
Wesley Longman, 2000, 429 pp.

[Boumph et al-00] F.Boumph, O Direnso, et al. XML Applications. Wrox Press Ltd. 2000, 688 pp.
[Breiman-96] L. Breiman. Stacked regression. Machine Learning, 24(1), 49-64, 1996.
[Brodley et al-96] T. Lane and C. E. Brodley. Creating and exploiting diversity. Proceedings of the AAAI-96

Workshop: Integrating Multiple Learned Models for Improving and Scaling Machine Learning, pp 8-14.
1996.

[Buntine-90] W.L.Buntine. A theory of learning classification rules. Ph.D thesis, University of Technology,
School of Computing Science, Sydney, Australia, 1990.

[Cabrera et al-01] J. B. D. Cabrera, L. Lewis, X. Qin, Wenke Lee, Ravi Prasanth, B. Ravichandran, and Raman
Mehra. Proactive Detection of Distributed Denial of Service Attacks Using MIB Traffic Variables - A
Feasibility Study. The Seventh IFIP/IEEE International Symposium on Integrated Network Management
(IM 2001), Seattle, WA, May 2001.

[Chan et al-98] P.K.Chan and S.J.Stolfo. A comparative evaluation of voting and meta-learning on partitioned
data. Proceedings of Twelfth 4th International Conference on machine Learning, Tahoe City, CA, 90-98,
1995.

[Chan et al-99] P. Chan, W. Fan, A. Prodromidis, and S. Stolfo. Distributed data mining in credit card fraud
detection. IEEE Intelligent Systems, pages 67–74, Nov/Dec 1999.

 145

[Chan et al-03] P. Chan, M. Mahoney & M. Arshad. Learning Rules and Clusters for Anomaly Detection in
Network Traffic, Managing Cyber Threats: Issues, Approaches and Challenges, V. Kumar, J. Srivastava &
A. Lazarevic (editors), Kluwer, 2003.

[Cheswick et al-94] W.Cheswick and S.Bellovin. Firewalls and Internet Security: Repelling the Wily Hacker,
Addison-Wesley Publishing Company, Reading, MA (1994).

[Clark et al-89] P.Clark and T.Niblett. The CN2 Induction Algorithm. Machine Learning Journal, 3, pp. 261-
283, 1989.

[Clemen-89] R.T.Clemen. Combining forecasts: A review and annotated bibliography. International Journal of
Forecasting, 5, 559-583, 1989.

[Clifton et al-00] C. Clifton, and G. Gengo. Developing Custom Intrusion Detection Filters Using Data Mining.
2000 Military Communications International, Los Angeles, California, October 22-25. 2000.

[Cohen-95] W.Cohen. Fast effective rule induction. Machine Learning: the 12th International Conference, Lake
Taho, CA, Morgan Kaufmann (1995).

[Cohen-97] F.Cohen. Information System Attacks: A Preliminary Classification Scheme. Computers [Dasgupta-
99] D.Dasgupta (Ed).Artificial Immune Systems and Their Applications. Springer Verlag (1999).

[Collis et al-99] J.Collis, D.Ndumu. The Zeus Agent Bilding Toolkit. ZEUS Technical Manual. Intelligent
Systems Research Group, BT Labs. Release 1.0, 1999, http://193.113.209.147/projects/agents/index.htm.

[Cost et al-93] S.Cost, S.Salzberg. A weighted nearest neighbor algorithm for learning with symbolic features.
Machine Learning, 10(1), 57-78, 1993.

[Das-00] K. Das. Attack Development for Intrusion Detection Evaluation, M.Eng. Thesis, MIT Department of
Electrical Engineering and Computer Science, June 2000.

[Dasgupta et al-01] D.Dasgupta and F.Gonzales. An Intelligent Intrusion Detection System for Intrusion
Detection. In Proceedings of the International Workshop "Mathematical Methods, Models and
Architectures for Computer Network Security. Lecture Notes in Computer Science, vol.2052, Springer
Verlag, pp.1-14. (2001).

[Denning-87] D.E. Denning. An Intrusion Detection Model. IEEE Transactions on Software Engineering, SE-
13:222-232, 1987.

[D'haeseleer et al-96] P. D'haeseleer, S. Forrest, and P. Helman. An Immunological Approach to Change
Detection: Algorithms, Analysis, and Implications. Proceedings of the 1996 IEEE Symposium on Computer
Security and Privacy (1996).

[D'haeseleer et al-97] P. D'haeseleer, S. Forrest, and P. Helman. A distributed approach to anomaly detection
(1997).

[Dietterich-97] T.Dietterich. Machine Learning Research: Four Current Directions. AI magazine. 18(4), 97-136,
1997.

[Dietterich-01] T.Dietterich. Ensemble Methods in Machine Learning. In M.Arbib (Ed.) Handbook of Brain
Theory and Neural Networks, 2nd Edition, MIT Press, 2001.

[Dokas et al-02] P. Dokas, L. Ertoz, V. Kumar, A. Lazarevic, J. Srivastava, and P.-N. Tan. Data Mining for
Network Intrusion Detection. Proc. NSF Workshop on Next Generation Data Mining, Baltimore, MD. 2002.

[Endler-98] D. Endler. Intrusion detection: Applying machine learning to solaris audit data. In Proceedings of
the 1998 Annual Computer Security Applications Conference (ACSAC’98), pages 268–279, Los Alamitos,
CA, December 1998. IEEE Computer Society, IEEE Computer Society Press. Scottsdale, AZ.

[Eskin-00] E. Eskin. Anomaly detection over noisy data using learned probability distributions. Proceedings of
the Seventeenth International Conference on Machine Learning (ICML-2000), Palo Alto, CA: July, 2000.

[Eskin et al-00] E. Eskin, M. Miller, Z.-D. Zhong, G. Yi, W.-A. Lee, and S. Stolfo. Adaptive model generation
for intrusion detection. Proceedings of the ACMCCS Workshop on Intrusion Detection and Prevention,
Athens, Greece, 2000.

[Eskin et al-01] E. Eskin, W. Lee, and S. J. Stolfo. Modeling System Calls for Intrusion Detection with Dynamic
Window Sizes. Proceedings of DARPA Information Survivability Conference and Exposition II (DISCEX II),
Anaheim, CA, 2001.

[Eskin et al-02] E. Eskin, A. Arnold, M. Prerau, L. Portnoy and S. Stolfo. A Geometric Framework for
Unsupervised Anomaly Detection: Detecting Intrusions in Unlabeled Data. Data Mining for Security
Applications. Kluwer 2002.

[Fan et al-00] W. Fan, W. Lee, S. Stolfo, and M. Miller. A multiple model approach for cost-sensitive intrusion
detection. Proc. 2000 European Conference on Machine Learning (ECML 2000), LNAI 1810, Barcelona,
Spain, May 2000.

[Fan et al-01] W. Fan. Cost-senstive, Scalable and Adaptive Learning Using Ensemble-based Methods. PhD
thesis, Columbia University, Feb 2001.

[Fayyad et al-96] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. The KDD process of extracting useful
knowledge from volumes of data. Communications of the ACM, 39(11), pp. 27-34 (1996).

 146

[Forrest et al-94] S. Forrest, A.S. Perelson, L. Allen, R. and Cherukuri. Self-nonself discrimination in a computer.
Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy, Los Alamitos, CA: IEEE
Computer Society Press (1994).

[Forrest et al-96] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense of self for Unix
processes. Proceedings of the 1996 IEEE Symposium on Security and Privacy, pp. 120-128, Los Alamitos,
CA, IEEE Computer Society Press (1996).

[Forrest et al-97a] S. Forrest, S. Hofmeyr, and A. Somayaji. Computer Immunology. Communications of the
ACM, Vol. 40, No. 10, pp. 88-96 (1997).

[Forrest et al-97b] S. Forrest, A. Somayaji, and D. Ackley. Building diverse computer systems. Proceedings of
the Sixth Workshop on Hot Topics in Operating Systems (1997).

[Frederick-00] K.Frederick. Abnormal IP Packets. www.securityfocus.com (2000).
[Freund et al-96] Y.Freund and R.E.Shapire. Experiments with a new boosting algorithm. In L.Saitta(Ed.)

Machine Learning. Proceedings of the 13th International Conference. Morgan Kaufmann, 1996.
[Gama et al-00] J.Gama and P.Brazdil. Cascade generalization. Machine Learning, 41(3), 315-342, 2000.
[Ghosh et al-98] A.K. Ghosh, J. Wanken, and F. Charron. Detecting anomalous and unknown intrusions against

programs. Proceedings of the 1998 Annual Computer Security Applications Conference (ACSAC'98),
December 1998.

[Ghosh et al-99a] A. K. Ghosh and A. Schwartzbard. "A study in using neural networks for anomaly and misuse
detection". In Proceedings of 8th USENIX Security. Washington, D.C, USA, August 23-26, 1999.

[Ghosh et al-99b] A.K. Ghosh, A. Schwartzbard, and M. Schatz. Learning program behavior profiles for
intrusion detection. Proceedings of the 1st USENIX Workshop on Intrusion Detection and Network
Monitoring. USENIX Association, April 11-12, 1999.

[Ghosh et al-99c] A.K. Ghosh, A. Schwartzbard, and M. Schatz. Using program behavior profiles for intrusion
detection. Proceedings of the SANS Intrusion Detection Workshop, February 1999.

[Gomez et al-03] J. Gomez, D. Dasgupta and F. Gonzalez. Detecting Cyber Attacks with Fuzzy Data Mining
Techniques. Proceedings the 2003 SIAM Workshop on Data Mining for Counter Terrorism and Security,
San Fracisco, May 1-3, 2003.

[Gomez et al-02a] J. Gómez and D. Dasgupta. Evolving Fuzzy Rules for Intrusion Detection. Proceedings of the
Third Annual IEEE Information Assurance Workshop 2002, New Jersey, June 2002.

[Gomez et al-02b] J. Gómez, D. Dasgupta, O. Nasraoui, and F. González. Complete Expression Trees for
Evolving Fuzzy Classifiers Systems with Genetic Algorithms and Application to Network intrusion
Detection. Proceedings of NAFIPS-FLINT joint conference, pages 469-474, New Orleans, LA, June 2002.

[Goodman et al-97] I.Goodman, R.Mahler, and H.Nguen. Mathematics of Data Fusion. Kluwer Academic
Publishers, 1997.

[Gorodetski-92] V.Gorodetski. Adaptation Problems in Expert System. International Journal of Adaptive
Control and Signal Processing, 6, pp.201-210, 1992.

[Gorodetski et al-96] V.Gorodetski and O.Karsayev. Algorithm of Rule Extraction from Learning Data.
Proceedings of the 8th International Conference "Expert Systems & Artificial Intelligence" (EXPERSYS-96),
133-138, 1996.

[Gorodetski et al-97] V.Gorodetski, A.Toulupiev. Knowledge Base Consistency Under Interval - Valued
Probabilistic Uncertainty. Transactions of the Russian Academy of Sciences "Control Methods and Systems",
5, Russia, 123-132, 1997. (in Russian)

[Gorodetski et al-98] V.Gorodetski, V.Nesterov. Interval Probabilities and Knowledge Engineering. In G.Alefeld
and R. Trejo (Eds.) Proceedings of World Congress on Expert Systems Workshop "Interval Computations
and its applications to Reasoning under Uncertainty", Knowledge Representation and Control Theory, 1998.

[Gorodetski et al-00] V.Gorodetski, V.Skormin, L.Popyack, and O.Karsayev. Distributed Learning in a Data
Fusion System. Proceedings of the Conference of the World Computer Congress (WCC-2000) "Intelligent
Information Processing" (IIP2000), 147-154, 2000.

[Gorodetski et al-02a] V.Gorodetski, O.Karsayev, I.Kotenko, and A.Khabalov. Software Development Kit for
Multi-agent Systems Design and Implementation. Lecture Notes in Artificial Intelligence 2296, Springer
Verlag, 121-130, 2002.

[Gorodetski et al-02b] V.Gorodetski and I.Kotenko. Attacks against Computer Network: Formal Grammar-based
Framework and Simulation Tool. Lecture Notes in Computer Science, V.2516. A.Wespi, G.Vigna, L.Deri
(Eds.). Recent Advances in Intrusion Detection. Fifth International Symposium. RAID 2002. Zurich,
Switzerland. October 2002. Proceedings. Springer Verlag, P.219-238. 2002.

[Gorodetski et al-02c] V.Gorodetski, V.Skormin, and L.Popyack. Data Mining Technology for Failure
Prognostics of Avionics, IEEE Transactions on Aerospace and Electronic Systems, vol. 38, #2, pp. 388-403,
2002.

 147

[Gorodetski et al–02d] V.Gorodetski, O.Karsayev and V.Samoilov. Multi-agent Data Fusion Systems: Design
and Implementation Issues. Proceedings of the 10th International Conference on Telecommunication
Systems - Modeling and Analysis, Monterey, CA, October 3-6, vol.2, pp.762-774, 2002

[Gorodetski et al-02e] V.Gorodetski, O.Karsayev. Mining of Data with Missed Values: A Lattice-based
Approach. International Workshop on the Foundation of Data Mining and Discovery in the 2002 IEEE
International Conference on Data Mining, Maebashi TERRSA, Maebashi City, Japan December 9 - 12,
2002, pp.151-156.

[Gorodetski et al-02f] V.Gorodetski, V.Skormin, L.Popyack. Data Mining Technology for Failure Prognostics of
Avionics, IEEE Transactions on Aerospace and Electronic Systems. Volume 38(2), 2002, 388-403.

[Gorodetski-02g] V.Gorodetski. Interim Report #3 on the Project # 1993P. Mathematical Basis of Knowledge
Discovery and Autonomous Intelligent Architectures. Task 1. Autonomous Information Collection,
Knowledge Discovery Techniques and Software Tool Prototype for Knowledge-Based Data Fusion,
November 2002.

[Guyon et al-03] I.Guyon, A.Elisseeff. An Introduction to Variable and Feature Selection. Journal of Machine
Learning Research, V.3, March 2003. P.1157-1182.

[Haines et al-01] J.W. Haines, R.P. Lippmann, D.J. Fried, E. Tran, S. Boswell, and M.A. Zissman. 1999 DARPA
Intrusion Detection System Evaluation: Design and Procedures. MIT Lincoln Laboratory Technical Report
TR-1062, 2001.

[Han et al-00] J.Han, J.Pei, B.Mortazavi-Asl, Q.Chen, U.Dayal, and M.Hsu. FreeSpan: Frequent pattern-
projected sequential pattern mining. ACM SIGKDD, 355-359, 2000.

[Han et al-01] J.Han and M.Kamber. Data Mining. Concept and Techniques. Morgan Kaufman Publishers, 2001.
[Hashem-93] S.Hashem. Optimal linear combination of neural networks. Ph.D. thesis, Purdue University, School

of Industrial Engineering, Lafaette, IN. 1993.
[Heller et al-03] K. A Heller, K. M. Svore, A. D. Keromytis, and S. J. Stolfo. One Class Support Vector

Machines for Detecting Anomalous Window Registry Accesses. 3rd IEEE Conference Data Mining
Workshop on Data Mining for Computer Security, Florida, November 19, 2003.

[Hellerstein et al-02] Hellerstein, S. Ma, and C.-S. Perng. Discovering actionable patterns in event data. Systems
Journal, Vol. 41, No. 3, 2002, P.475-493.

[Hershkop et al-03] S. Hershkop, R. Ferster, L. H. Bui, K. Wang and S. J. Stolfo. Host-based Anomaly Detection
by Wrapping File System Accesses. CU Tech Report, April 2003.

[Hofmeyr et al-98] S. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection using sequences of system calls.
Journal of Computer Security Vol. 6, pp. 151-180 (1998).

[Hofmeyr et al-99] S. Hofmeyr and S. Forrest. Architecture for an Artificial Immune System. Evolutionary
Computation 7(1), Morgan-Kaufmann, San Francisco, CA, pp. 1289-1296 (1999).

[Honig et al-02] A. Honig, A. Howard, E. Eskin, and S. Stolfo. Adaptive Model Generation: An Architecture for
the Deployment of Data Minig-based Intrusion Detection Systems. Data Mining for Security Applications.
Kluwer 2002.

[Howard-97] J.Howard. An Analysis of Security Incidents on the Internet, 1989 - 1995, Ph.D. Dissertation,
Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA (1997).

[Howard et al-98] J.Howard, T.Longstaff, A Common Language for Computer Security Incidents, SANDIA
REPORT, SAND98-8667 (1998).

[http-1] http://193.113.209.147/projects/agents.htm
[http-2] http://www.daml.org/about.html
[http-3] http://www.w3.org/TR/1998/WD-rdf-schema/
[http-4] http://www.ontoprise.de/download/ontoedit_data_sheet.pdf
[http-5] http://protege.stanford.edu/
[http-6] http://www.madkit.org.
[http-7] http://www.kecl.ntt.co.jp/csl/msrg/topics/at/
[http-8] http://www.iks.com/
[http-9] http://www.cognitiveagent.com/
[http-10] http://www.bitpix.com/
[http-11] http://members-http-2.rwc1.sfba.home.net/marcush/ IRS/
[http-12] http://www.objectspace.com/
[http-13] http://www.cis.ksu.edu/~sdeloach/ai/agentool.htm
[http-14] http://samuel.cs.uni-potsdam.de/soft/taxt/research/ade /ade.html
[http-15] http://agent.cs.dartmouth.edu/
[http-16] http://fipa-os.sourceforge.net/
[ideval-99] MIT Lincoln labs. 1999 darpa intrusion detection evaluation, http://www.ll.mit.edu/ist/ideval/

index.html.

 148

[IF] International Society of Information Fusion. The Fusion Problem. http://www.inforfusion.org/ mission.htm.
[InterRep#1] Interim Report #1 on the Project#1994P, Task 2 “Mathematical Foundations, Architecture and

Principles of Implementation of Multi-Agent Learning Components for Attack Detection in Computer
Networks”, August 2001.

[InterRep#2] Interim Report #2 on the Project#1994P, Task 2 “Mathematical Foundations, Architecture and
Principles of Implementation of Multi-Agent Learning Components for Attack Detection in Computer
Networks”, May 2002.

[InterRep#3] Interim Report #3 on the Project#1994P, Task 2 “Mathematical Foundations, Architecture and
Principles of Implementation of Multi-Agent Learning Components for Attack Detection in Computer
Networks”, May 2003.

[JADE-99] F.Bellifemine, A.Poggi, and G.Rimassa. JADE – A FIPA-compliant agent framework. Proceedings
of PAAM’99, London, UK, 1999, http://sharon.cselt.it/projects/jade.

[Javitz et al-93] H.S. Javitz, and A. Valdes. The NIDES Statistical Component: Description and Justification,
Technical Report, Computer Science Laboratory, SRI International, 1993.

[Jordan al-94] M.L.Jordan and R.A.Jacobs. Hierarchical mixtures of experts and the EM algorithm. Neural
Computations, 6(2), 181-214, 1994.

[Julisch-01] K. Julisch. Mining Alarm Clusters to Improve Alarm Handling Efficiency. Proceedings of the 17th
ACSAC, New Orleans, December 2001.

[Julisch-02] K. Julisch. Data Mining for Intrusion Detection: A Critical Review. Applications of Data Mining in
Computer Security, D. Barbará and S. Jajodia (ed.), Kluwer Academic Publisher, Boston, 2002.

[Julisch et al-02] K. Julisch and M. Dacier. Mining Intrusion Detection Alarms for Actionable Knowledge. The
8th ACM International Conference on Knowledge Discovery and Data Mining, Edmonton, July 2002.

[Kendall-99] K. Kendall. A Database of Computer Attacks for the Evaluation of Intrusion Detection Systems,
M.Eng. Thesis, MIT Department of Electrical Engineering and Computer Science, June 1999.

[Kim et al-03] H. Kim and P. Chan, Learning Implicit User Interest Hierarchy for Context in Personalization,
Proceedings of International Conference on Intelligent User Interfaces, p. 101-108, 2003.

[Korba-00] J. Korba. Windows NT Attacks for the Evaluation of Intrusion Detection Systems, M.Eng. Thesis,
MIT Department of Electrical Engineering and Computer Science, May 2000.

[Krsul-98] I.Krsul, Software Vulnerability Analysis, Ph.D. Dissertation, Computer Sciences Department, Purdue
University, Lafayette, IN (1998).

[Kubat-96] M.Kubat. Second Tier for Decision Trees. Machine Learning: Proceedings of the 13th International
Conference, Morgan Kaufman, San Francisco, CA, 1996.

[Kubat et al-96] M.Kubat, I.Bratko and R.Michalski (Eds.). A Review of Machine Learning Methods. Machine
Learning and Data Mining. Methods and Applications. J.Wiley and Sons Ltd, 1996.

[Kumar et al-95] S.Kumar and E..Spafford. A software architecture to support misuse intrusion detection.
Proceedings of the 18th National Information Security Conference, pp. 194-204 (1995).

[Landwehr-94] C.Landwehr, A.Bull, J.McDermott, and W.Choi. A Taxonomy of Computer Security Flaws.
ACM Computing Surveys, Vol. 26, No. 3, September, pp. 211-254 (1994).

[Lane et al-97a] T. Lane and C. E. Brodley. Detecting the Abnormal: Machine Learning in Computer Security.
Technical Report ECE-97-1, January 1997, Department of Electrical and Computer Engineering, Purdue
University, West Lafayette, IN 47907.

[Lane et al-97b] T. Lane and C. E. Brodley. Sequence matching and learning in anomaly detection for computer
security. Proceedings of the AAAI-97 Workshop on AI Approaches to Fraud Detection and Risk
Management, pp. 43-49. AAAI Press (1997).

[Lane et al-97c] T. Lane and C. E. Brodley. An Application of Machine Learning to Anomaly Detection. 20th
Annual National Information Systems Security Conference, Vol. 1, pp 366-380. 1997.

[Lane-98a] T. Lane. Filtering Techniques for Rapid User Classification. Proceedings of the AAAI-98/ICML-98
Joint Workshop on AI Approaches to Time-series Analysis, pp 58-63. 1998.

[Lane-98b] T. Lane. Matching Learning Techniques for the Domain of Anomaly Detection for Computer
Security. Coast TR 98-11. West Lafayette, IN: COAST Laboratory, Purdue University, 1998.

[Lane et al-98a] T. Lane and C. E. Brodley. Approaches to Online Learning and Concept Drift for User
Identification in Computer Security. Proceedings of the Fourth International Conference on Knowledge
Discovery and Data Mining, pp 259-263. 1998.

[Lane et al-98b] T. Lane and C. E. Brodley. Temporal sequence learning and data reduction for anomaly
detection. Proceedings of the Fifth ACM Conference on Computer and Communications Security, pages
150–158, 1998.

[Lane-99] T. Lane. Hidden Markov Models for Human/Computer Interface Modeling. Proceedings of the IJCAI-
99 Workshop on Learning about Users, pp 35-44. 1999.

 149

[Lane et al-99] T. Lane and C. E. Brodley. Temporal sequence learning and data reduction for anomaly
detection. ACM Transactions on Information and System Security, 2:295-331, 1999.

[Lazarevic et al-02] A. Lazarevic, P. Dokas, L. Ertoz, V. Kumar, J. Srivastava, and P.-N. Tan. Cyber Threat
Analysis - A Key Enabling Technology for the Objective Force (A Case Study in Network Intrusion
Detection). Proceedings 23rd Army Science Conference, Orlando, FL. 2002.

[Lazarevic et al-03a] A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava. A Comparative Study of
Anomaly Detection Schemes in Network Intrusion Detection. 3rd SIAConference on Data Mining, San
Francisco, CA, 2003.

[Lazarevic et al-03b] A. Lazarevic, J. Srivastava, and V. Kumar. Protecting Against Cyber Threats in Network
Centric Systems. SPIE Annual Symposium on AeroSense, Battlespace Digitization and Network Centric
Systems III, Orlando, FL. 2003.

[Lee et al-97] W. Lee, S. Stolfo, and P. Chan. Learning patterns from Unix process execution traces for intrusion
detection. AAAI Workshop: AI Approaches to Fraud Detection and Risk Management, pp.50-56. AAAI
Press, 1997.

[Lee et al-98a] W. Lee, S. J. Stolfo, and K. Mok. Mining audit data to build intrusion detection models.
Proceedings of 4th International Conf. on Knowledge Discovery and Data Mining, AAAI Press (1998).

[Lee et al-98b] W.Lee and S.Stolfo. Data Mining Approaches for Intrusion Detection. Proceedings 7th USENIX
Security Symposium. 1998. http://www.cs.columbia.edu/~sal/ hpapers/ USENIX/usenix.html (1998).

[Lee et al-99a] W.Lee and S.Stolfo, and K.Mok. A Data mining Framework for Building Intrusion Detection
Model. Proceedings of the IEEE Symposium on Security and Privacy, Oakland, CA, May 1999. IEEE
Computer Press, 1999. http://www.cs.columbia.edu/~sal/hpapers/ IEEE99.ps.gz

[Lee et al-99b] W. Lee, S. J. Stolfo, and K. Mok. Data mining in work flow environments: Experiences in
intrusion detection. Proceedings of the 1999 Conference on Knowledge Discovery and Data Mining (KDD-
99), 1999. http://www.cs.columbia.edu/~sal/hpapers/KDD99-id.ps.gz

[Lee et al-99c] W. Lee, C. Park, and S. Stolfo. Towards Automatic Intrusion Detection using NFR. 1st USENIX
Workshop on Intrusion Detection and Network Monitoring, April 1999.

[Lee-99] W. Lee. A Data Mining Framework for Constructing Features and Models for Intrusion Detection
Systems. PhD thesis, Columbia University, New York, NY. June 1999.

[Lee et al-00a] W. Lee and S. Stolfo. A Framework for Constructing Features and Models for Intrusion
Detection Systems. ACM Transactions on Information and System Security, Volume 3, Number 4
(November 2000).

[Lee et al-00b] W. Lee, S. Stolfo, and K. Mok. Algorithms for Mining System Audit Data. Granular Computing
and Data Mining, T. Y. Lin and N. Cercone (eds), Springer-Verlag, 2000.

[Lee et al-00c] W. Lee, S. Stolfo, and K. Mok. Adaptive Intrusion Detection: A Data Mining Approach.
Artificial Intelligence Review, Kluwer Academic Publishers, 14(6): 533-567, December 2000.

[Lee et al-00d] W. Lee, W. Fan, M. Miller, S. Stolfo, and E. Zadok. Toward Cost-Sensitive Modeling for
Intrusion Detection and Response. The First ACM Workshop on Intrusion Detection Systems, Athens,
Greece, November 2000.

[Lee et al-00e] W. Lee, R. Nimbalkar, K. Yee, S. Patil, P. Desai, T. Tran, and S. J. Stolfo. A data mining and
CIDF based approach for detecting novel and distributed intrusions. Proceedings of the 3rd International
Workshop on Recent Advances in Intrusion Detection (RAID 2000), LNCS 1907. October 2000.

[Lee et al-01a] W. Lee and D. Xiang. Information-theoretic measures for Anomaly Detection. In Proceedings of
the 2001 IEEE Symposium on Security and Privacy. May, 2001.

[Lee et al-01b] W. Lee, S. J. Stolfo, P. K. Chan, E. Eskin, W. Fan, M. Miller, S. Hershkop, and J. Zhang. Real
Time Data Mining-based Intrusion Detection. Proceedings of Proceedings of DARPA Information
Survivability Conference and Exposition II (DISCEX II). June 2001.

[Liao et al-02] Y. Liao and R. Vemuri. Using Text Categorization Techniques for Intrusion Detection. 11th
USENIX Security Symposium, 2002.

[Lindqvist-97] U.Lindqvist and E.Jonsson. How to Systematically Classify Computer Security Intrusions.
Proceedings of the 1997 IEEE Symposium on Security and Privacy, IEEE Computer Society Press, Los
Alamitos, CA, pp. 154-163 (1997).

[Lippmann et al-99] R.P. Lippmann, R.K. Cunningham, D. J. Fried, I. Graf, K. R. Kendall, S. W. Webster, M.
Zissman, Results of the 1999 DARPA Off-Line Intrusion Detection Evaluation, Proceedings of the Second
International Workshop on Recent Advances in Intrusion Detection (RAID99), West Lafayette, IN, 1999.

[Lippmann et al-00] R.P. Lippmann, D.J. Fried, I. Graf, J.W. Haines, K.P. Kendall, D. McClung, D. Weber, S.E.
Webster, D. Wyschogrod, R.K. Cunningham, and M. A. Zissman, Evaluating Intrusion Detection Systems:
The 1998 DARPA Off-line Intrusion Detection Evaluation, Proceedings DARPA Information Survivability
Conference and Exposition (DISCEX) 2000, Vol. 2, pp. 12-26, IEEE Computer Society Press, Los Alamitos,
CA, 2000.

 150

[Lukazky-01] Intrusion Detection. BHV, Saint-Petersburg, (2001) (In Russian).
[Luo-99] J. Luo. Integrating Fuzzy Logic With Data Mining Methods for Intrusion Detection, Master's thesis,

Department of Computer Science, Mississippi State University, 1999.
[Mahoney et al-01] M. Mahoney and P. Chan. Detecting Novel Attacks by Identifying Anomalous Network

Packet Headers. Technical Report CS-2001-2, Florida Tech. 2001.
[Mahoney et al-02] M. Mahoney and P. Chan. Learning Nonstationary Models of Normal Network Traffic for

Detecting Novel Attacks, Proceeding of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 376-385, Edmonton, Canada, July 2002.

[Mahoney-03] M.V. Mahoney. A Machine Learning Approach to Detecting Attacks by Identifying Anomalies in
Network Traffic. PhD thesis, Florida Institute of Technology, Melbourne, Florida. May, 2003.

[Mahoney et al-03a] M. Mahoney and P. Chan. Learning Rules for Anomaly Detection of Hostile Network
Traffic. Proceedings of Third IEEE International Conference on Data Mining, 2003.

[Mahoney et al-03b] M. Mahoney and P. Chan. An Analysis of the 1999 DARPA/Lincoln Laboratory
Evaluation Data for Network Anomaly Detection, Proceedings of 6th International Symposium “Recent
Advances in Intrusion Detection”, p. 220-237, 2003.

[Manganaris et al-99] S. Manganaris, M. Christensen, D. Serkle, and K. Hermix. A Data Mining Analysis of
RTID Alarms. Proceedings of the 2nd International Workshop on Recent Advances in Intrusion Detection
(RAID 99), West Lafayette, IN, September 1999.

[Manganaris et al-00] S. Manganaris, M. Christensen, D. Zerkle, and K. Hermiz. A data mining analysis of
RTID alarms, Computer Networks, 34, 2000, p. 571-577.

[Mannila et al-95] H.Mannila, H.Toivonen, and A.Verkamo. Discovering frequent episodes in sequences.
Proceedings of the 1st International Conference on Knowledge Discovery in Databases and Data Mining,
Montreal, Canada (1995).

[McClure et al-01] S. McClure, J. Scambray and G. Kurtz. Hacking Exposed: Network Security Secrets &
Solutions, Third Edition. The McGraw-Hill Companies, Inc. 2001.

[Merz-97] C.J.Merz. Combining classifiers using correspondence analysis. In Advances in Neural Information
Processing, 1997.

[Merz al-97] C.Merz and P.Murphy. UCI repository of machine learning databases. Irvine, CA, University of
California, Department of Information and Computer Science, 1997. Available at
http://www.ics.uci.edu/!mlearn/MLR repository.html.

[Michael-03] C. Michael. Finding the vocabulary of program behavior data for anomaly detection, Proceedings
of DARPA Information Survivability Conference and Exposition III (DISCEX III), 2003.

[Michalski-83] R.Michalski. A Theory and Methodology of Inductive Learning. J.G.Carbonel, R.S.Michalski,
and T.M.Mitchel (Eds.), Machine Learning, vol.1, Tigoda, Palo Alto, 83-134, 1983.

[Michalski et al-93] The Inferential Theory of Learning: Developing of Foundations of Multi-strategy Learning.
Machine Learning: A Multi-strategy Approach, volume 4 (Eds. R.S.Michalski and G.Tecuci), Morgan
Kaufman Publishers, 1993.

[Michalski et al-97] R.Michalski and A.Kaufman. Data Mining and Knowledge Discovery: A Review of Issues
and Multistrategy Approach. Machine learning and Data Mining: Methods and Applications (Eds.
R.Michalski, I.Bratko and M.Kubat) John Wiley&Sones Ltd., 1997.

[Mukkamala et al-00] R. Mukkamala, J. Gagnon, and S. Jajodia. Integrating data mining techniques with
intrusion detection methods. Research Advances in Database and Information Systems Security, Vijay
Atluri and John Hale, editors, Kluwer Publishers, Boston, MA. 33-46. 2000.

[Michalski et al-01] Michalski and K.Kaufmann. The AQ19 System for Machine Learning and Pattern
discovery: A General Description and User's guide. George Mason University. Technical Report ML01-2,
P01-2, 2001.

[Mollestad-97] T.Mollestad. A Rough Set Approach to Data Mining: Extracting a Logic of Default Rules from
Data. Ph.D Thesis. Tronheim, Norwegian University of Science and Technology, 1997.

[Murthy et al-93] S.Murthy, S.Kassif, S.Salzberg, and R.Beigel. OC1: Randomized Induction of oblique
decision trees. Proceedings of AAAI-93, AAAI Press, 1993.

[Niyogi et al-00] P.Niyogi, J-B.Pierrot, O.Siohan. Multiple Classifiers by constrained minimization. Proceedings
of International Conference on Acoustics, Speech, and Signal Processing, Istanbul, Turkey, 2000.

[Northcutt-99] S.Northcutt. Network Intrusion Detection. An Analyst's Handbook. New Riders Publishing (1999).
[Ortega et al-01] J.Ortega, M.Coppel, and S.Argamon. Arbitraining Among Competing Classifiers Using

Learned Referees. Knowledge and Information Systems, 4, 2001, 470-490.
[Pawlak-82] Z.Pawlak. Rough Sets. International Journal of Computer and Information Sciences, 11, 341-356,

1982.

 151

[Perrone et al-93] M.P.Perrone and L.N.Cooper. When networks disagree: Ensemble methods for hybrid neural
networks/ In R.J.Mammone (Ed.), Neural Networks for Speech and Image Processing, Chapman and Hall,
1993.

[Pfanzagl-71] J.Pfanzagl. Theory of Measurement. Phyzica-Verlag, Wuerzburg-Wien, 1971.
[Porras et al-98] P.Porras and A.Valdes. Live traffic analysis of tcp/ip gateways. Proceedings of the Internet

Society Symposium on Network and Distributed System Security (1998).
[Portnoy-00] L. Portnoy. Intrusion detection with unlabeled data using clustering. Undergraduate Thesis,

Columbia University, Department of Computer Science, 2000.
[Portnoy et al-01] L. Portnoy, E. Eskin and S. J. Stolfo. Intrusion detection with unlabeled data using clustering.

Proceedings of ACM CSS Workshop on Data Mining Applied to Security (DMSA-2001). Philadelphia, PA:
November 5-8, 2001.

[Posland et al-00] S.J.Poslad, S.J.Buckle, and R.Hadingham: The FIPA-OS agent platform: Open Source for
Open Standards. Proceedings of PAAM 2000, Manchester, UK, 2000, http://fipa-os.sourceforge.net/.

[Proctor-01] P.Proctor. Practical Intrusion Detection Handbook. Prentice Hall PTR (2001).
[Prodromidis et al-99a] A. Prodromidis, S. Stolfo, and P. Chan. Effective and Efficient Pruning of Meta-

Classifiers in a Distributed Data Mining System. Journal on Data Mining and Knowledge Discovery, 1999.
http://www.cs.columbia.edu/~sal/hpapers/DMKDJ.ps.gz

[Prodromidis et al-99b] A. Prodromidis, P. Chan, and S. Stolfo. Meta-Learning in Distributed Data Mining
Systems: Issues and Approaches, Advances in Distributed Data Mining, AAAI Press, Kargupta and Chan
(eds.). 1999. http://www.cs.columbia.edu/~sal/hpapers/ DDMBOOK.ps.gz

[Prodromidis-99] A.L. Prodromidis. Management of Intelligent Learning Agents in Distributed Data Mining
Systems. PhD Theses. COLUMBIA UNIVERSITY. 1999.

[Quinlan-86] J.Quinlan. Induction of Decision Trees. Machine Learning, 1, vol.1, 1986.
[Quinlan-92] J.Quinlan. С4.5: Program for Machine Learning. Morgan Kaufmann, 1992.
[Quinlan-93] R.Quinlan. C4.5 Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA, 1993.
[Quinlan-96] J.Quinlan. Improved Use of Continuous Attributes in C.4.5. Journal of Artificial Intelligence

Research, 4, 77-90, 1996.
[Rao-68] C.R.Rao Linear Statistical Inference and its Applications. John Wiley & Sons. Inc. 1968.
[Raseva et al-63] H.Raseva and R.Sikorski. The Mathematics of Meta-mathematics. Warshaw, Monograpie

Mathematyczne, 1963.
[Report-99] Applied Methods and Models of Knowledge Engineering in Information Based Health Assessment

Systems. Final Report on Contract No.F61775-98-WE116, 1999.
[RFC0793-81] RFC 0793. J. Postel. Transmission Control Protocol (1981).
[RFC1918-96] RFC 1918. Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot & E. Lear. Address

Allocation for Private Internets (1996).
[RFC0931-85] RFC 0931. M. St. Johns. Authentication server (1985).
[Robertson et al-03] S. Robertson, E. Siegel, M. Miller and S. Stolfo. Surveillance detection in high bandwidth

environments, Proceedings of DARPA Information Survivability Conference and Exposition III (DISCEX
III), 2003.

[Rumelhart et al-86] D.E.Rumelhart, G.E.Hinton, and R.J.Williams. Learning internal representation by error
propagation. In D.E.Rumelhart, J.L.McClelland (Eds.) Parallel Distributed Processing: Exploration of the
microstructure of cognitions, Volume 1: Foundations. MIT Press, 1986.

[Samoilov-02] V. Samoilov. Data Fusion Systems: Principles and Architecture for Data Processing in Decision
Making System Learning. Transactions of SPIIRAS, # 1, 2002. (In Russian)

[sa2003] NSFOCUS Security Advisory (SA2003-01). http://packetstormsecurity.nl/0303-exploits/sa2003-01.txt
[Scambray et al-01] J. Scambray and S. McClure. Hacking Exposed Windows 2000. The McGraw-Hill

Companies, Inc. 2001.
[Schultz et al-01a] M. G. Schultz, E. Eskin, and S. J. Stolfo. MEF: Malicious Email Filter - A UNIX Mail Filter

that Detects Malicious Windows Executables. USENIX Annual Technical Conference - FREENIX Track,
Boston, MA, June 2001.

[Schultz et al-01b] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo. Data Mining Methods for Detection of
New Malicious Executables. IEEE Symposium on Security and Privacy, Oakland, CA, May 2001.

[Seewald et al-01] A.K.Seewald, J.Fuernkranz. An evaluation of grading classifiers. Proceedings of 4th
International Conference "Intelligent data Analysis", LNCS 2189, Springer Verlag, 115-124, 2001.

[Semantic Web] http://www.w3.org/DesignIssu es/Semantic.html
[Sequeira et al-02] K. Sequeira, and M. Zaki. ADMIT: Anomaly-base Data Mining for Intrusions. Proceedings

of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton,
July 2002.

 152

[Skormin et al-97] V.Skormin and L.Popyack. Reliability of Avionics and “History of Abuse”. A Prognostic
Technique. Proceedings of ICI&C ‘97, St. Petersburg, Russia. pp. Lxxvi-lxxxii, 1997.

[Skormin et al-01] V.Skormin, J.Delgado-Frias, D.McGee, J.Giordano, L.Popyack, V.Gorodetski, A.Tarakanov.
BASIS: A Biological Approach to System Information Security. In Proceedings of the International
Workshop "Mathematical Methods, Models and Architectures for Computer Network Security. Lecture
Notes in Computer Science, vol.2052, Springer Verlag, pp.127-142 (2001).

[Skowron-00] A.Skowron. Rough Sets in KDD. Proceedings of 16th World Computer Congress, vol. “Intelligent
Information Processing”, Beijing, 1-17, 2000.

[Sloman-98] A.Sloman: What’s an AI Toolkit For? In Proceedings of the AAAI-98 Workshop on Software Tools
for Developing Agents. Madison, Wisconsin, 1998.

[Somayaji et al-98] A. Somayaji, S. Hofmeyr, and S. Forrest. Principles of a Computer Immune System. 1997
New Security Paradigms Workshop pp. 75-82, 1998.

[Srikant et al-95] R. Srikant and R. Agrawal. Mining generalized association rules. Proceedings of the 21st
VLDB Conference, Zurich, Switzerland (1995).

[Stolfo et al-97a] S. Stolfo, D. Fan, W. Lee, A. Prodromidis, and P. Chan. Credit Card Fraud Detection Using
Meta-Learning: Issues and Initial Results. AAAI Workshop: AI Approaches to Fraud Detection and Risk
Management, July 1997.

[Stolfo et al-97b] S.J. Stolfo, D. Fan, W. Lee, A. Prodromidis, and P. Chan. JAM: Java Agents for Meta-learning
over Distributed Databases. Proc. KDD-97 (runner up best paper, applications) and AAAI97 Work. on AI
Methods in Fraud and Risk Management), 1997.

[Stolfo et al-97c] S. J. Stolfo, A. L. Prodromidis, S. Tselepis, W. Lee, D. W. Fan, and P. K. Chan. JAM: Java
agents for meta-learning over distributed databases. Proceedings of the 3rd International Conference on
Knowledge Discovery and Data Mining (KDD '97), pages 74–81, Newport Beach, CA, August 1997. AAAI
Press.

[Stolfo et al-00] S. J. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. Chan. Cost-based modeling for fraud and
intrusion detection: Results from the JAM project. Proceedings of the 2000 DARPA Information
Survivability Conference and Exposition (DISCEX '00), Hilton Head, SC, January 2000.

[Stolfo-03] S.J. Stolfo. Behavior-based Computer Security. Lecture Notes in Computer Science, Springer-Verlag,
V.2776. Theory and Practice of Computer Network Security. Proceedings of the International Workshop on
Mathematical Methods, Models and Architectures for Computer Network Security, St. Petersburg, Russia,
September 21–23, 2003. P.57-81.

[Stolfo et al-03a] S. J. Stolfo, Wei-Jen Li, S. Hershkop, K. Wang, C.-W. Hu, O. Nimeskern. Detecting Viral
Propagations Using Email Behavior Profiles. CU Tech Report, 2003.

[Stolfo et al-03b] S. J. Stolfo, C.-W. Hu, W.-J. Li, S. Hershkop, K. Wang, and O. Nimeskern. Combining
Behavior Models to Secure Email Systems. CU Tech Report, April 2003.

[Stolfo et al-03c] S. J. Stolfo, S. Hershkop, K. Wang, O. Nimeskern, and C.-W. Hu. Behavior Profiling of Email.
1st NSF/NIJ Symposium on Intelligence & Security Informatics (ISI 2003). June 2-3, 2003, Tucson, Arizona,
USA.

[Stolfo et al-03d] S. J. Stolfo, S. Hershkop, K. Wang, O. Nimerkern and C.-W. Hu. A Behavior-based Approach
to Securing Email Systems. Mathematical Methods, Models and Architectures for Computer Networks
Security, Proceedings, Springer Verlag, Sept. 2003.

[Suppes et al-63] P.Suppes, J.Zinnes. Basic Measurement Theory. In "Handbook Math. Psychol." (eds.R.Luce,
R.Bush, E.Galanter). New York, vol. 1, pp.1-76, 1963.

[Tcptrace] Tcptrace software tool, www.tcptrace.org
[Teng et al-90] H. S. Teng, K. Chen, and S. C. Lu. Adaptive real-time anomaly detection using inductively

generated sequential patterns. Proceedings of the IEEE Symposium on Research in Security and Privacy,
pages 278–284, Oakland CA, May 1990.

[Ting-96] K.Ting. The characterization of predictive accuracy and decision combination. In Procedings of 13th
International Conference on Machine Learning, Morgan Kaufman, 1996, 498-506.

[Ting et al-99] K.M.Ting and I.H.Witten. Issues in stacked generalization. Journal of Artificial Intelligence
Research, 10, 271-289, 1999.

[Todorovski et al-00] L.Todorovski and S.Dzeroski. Combining classifiers with meta–decision trees.
D.A.Zighen, J.Komarowski and J.Zitkov (Eds.) In Proceedings of 4th European Conference on Principles of
Data Mining and Knowledge Discovery (PKDD-00), France, Springer Verlag, 2000, 54-64.

[Todorovski et al-01] L.Todorovski, S.Dzeroski. Combining multiple models classifiers with meta–decision
trees. Machine Learning Journal. 2001.

[Vilalta et al-01] R.Vilalta and Y.Drissi. A perspective view and survey of meta-learning. Submitted to the
Journal of Artificial Intelligence Review (March 2001). Available at http://www.research.ibm.com/
people/v/vilalta/papers/jaireview01.ps.

 153

[Wang et al-03] K. Wang, S. J. Stolfo. One Class Training for Masquerade Detection. CU Tech Report, April
2003.

[Warrender et al-99] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting intrusions using system calls:
alternative data models. Proceedings of 1999 IEEE Symposium on Security and Privacy, pages 133-145.
IEEE Computer Society, 1999.

[Weiss et al-99] Multiagent Systems. A modern Approach to Distributed Artificial Intelligence. Ed. G.Weiss.
MIT Press, 1999, 376 pp.

[Wolpert-92] D.Wolpert. Stacked generalization. Neural Network, 5(2), 241-260, 1992.
[Wooldridge-01] M.Wooldridge. An Introduction to Multi-agent Systems. John Wilie&Sons, LTD, 2001,348 pp.
[Ye-00] N. Ye. A Markov Chain Model of Temporal Behavior for Anomaly Detection, Proceedings of the 2000

IEEE Systems, Man, and Cybernetics Information Assurance and Security Workshop, 2000.
[Ye et al-01] N. Ye, X. Li, Q. Chen, S. M. Emran, and M. Xu. Probabilistic techniques for intrusion detection

based on computer audit data. IEEE Transactions on Systems, Man, and Cybernetics, Vol. 31, No. 4, 2001,
pp. 266-274.

[Ye et al-02a] N. Ye, S. M. Emran, Q. Chen, and S. Vilbert. Multivariate statistical analysis of audit trails for
host-based intrusion detection. IEEE Transactions on Computers, Vol. 51. No. 7, 2002, pp. 810-820.

[Ye et al-02b] N. Ye, C. Borror, and Y. Zhang. EWMA techniques for computer intrusion detection through
anomalous changes in event intensity. Quality and Reliability Engineering International, Vol. 18, No. 6,
2002, pp. 443-451.

[Ye et al-03] N. Ye, and Q. Chen. Computer intrusion detection through EWMA for auto-correlated and
uncorrelated data. IEEE Transactions on Reliability, Vol. 52, No. 1, 2003, pp. 73-82.

[Zhang et al-00] Y. Zhang and W. Lee. Intrusion Detection in Wireless Ad-Hoc Networks. Proceedings of the
Sixth International Conference on Mobile Computing and Networking (MobiCom 2000), Boston, MA,
August 2000.

[Zytkov et al-00] J.Zytkov, W.Klosgen. Machine Discovery Terminology. http://orgwis.gmd.de/
projects/explora/terms.html (2000).

 154

Appendixes. Logs of Operation of the Developed Software Prototype of
Multi-agent Learning System: Training and Testing for the
Application Corresponding to the Case Study

The purpose of this Appendix is to demonstrate the operation of the developed multi-agent
distributed data mining and decision making system prototype (including IDLS and IDS components)
and the respective technology as applied to the training and testing dataset from intrusion detection
learning area that was developed by authors of this Report1. The dataset itself was described in
Chapter 5. Let us note that this data corresponds to three different data sources of network level, host-
based level and application level (but in experiments fulfilled two last levels were combined).
Additionally, each above mentioned data source includes temporal and statistical data calculated on
different (short term and long term) basis. Let us also note that the necessity to develop new training
and testing dataset was entailed by the fact that didn't succeed in finding anywhere a dataset of the
more or less complicate structure that contain data sources of different levels and several data types in
each of them.

Appendix A. Training and Testing on the Basis of Network-based Datasets

1. Classes and Data Sets

1.1. Structure of classes

• Normal: Connection Status ='Normal';
• Abnormal: Connection Status ='NOT Normal', which includes Abnormal user activities and

attacks.
Classification tree includes Root node with 2 branches leading to the nodes marked as Normal and

Abnormal.

1.2. Analysis of datasets in the source NetLevel – Connections

Number of cases – 432.

ID_ENTITY 432
Normal 114
Abnormal 318

Assignment of data for training and testing of base classifiers:

- Connection.ID_ENTITY<= ’Thu Jul 17 21:27:54,960745 2003’ AND Normal
- Connection.ID_ENTITY<=’Thu Jul 17 22:01:34,172798 2003’ AND Abnormal

Number of cases of the classes:
Normal – 57;
Abnormal – 157.

Conditions for selection of training data:

Percentage 100%: (Connection.ID_ENTITY <= 'Thu Jul 17 21:24:39,126390') AND Normal
Percentage 50%: (Connection.ID_ENTITY <= 'Thu Jul 17 22:01:34,172798 2003') AND

Abnormal
Number of cases of the classes:

Normal – 29;
Abnormal – 78.

Conditions for selection of training data:

Percentage 100%: ((Connection.ID_ENTITY > 'Thu Jul 17 21:24:39,126390') AND
(Connection.ID_ENTITY<= 'Thu Jul 17 21:27:54,960745 2003')) AND Normal

1 This dataset can be made available to the Partner (EOARD) on request.

 155

Percentage 50%: (Connection.ID_ENTITY <= 'Thu Jul 17 22:01:34,172798 2003') AND
Abnormal

Number of cases of the classes:
Normal – 28;
Abnormal – 78.

2. Training of the base classifier BKConnectionNormal

While analyzing data of training dataset, we determine the attributes having no variation (features)
to delete from dataset as non–informative:

- Connection_SYN_src_dst
2.1. Extraction rules of class Normal
Search for predicates by use VAM algorithm:
Result: 6 rules:
�

BKConectionNormal_N1=� (+1603.4361861057725000*Connection.Packets-
20773.3892031407300000� >� 0)� AND� (+0.9999874021551684*�
Connection.Duration+0.0050195150121859*Connection.PSH_dst_src-
0.0668631266297002� >� 0)�

BKConectionNormal_N2=(+0.3898192994799297*Connection.Packets-
0.9208913691380632*Connection.PSH_src_dst-3.0964780702130232� >� 0)� AND�
(+0.9997786108798298*Connection.Duration-0.0210411317946090*�
Connection.PSH_dst_src-0.0408048178738170� >� 0)�
�
BKConectionNormal_N3=(+0.9892747788830054*Connection.Duration+0.14606646386
48474*Connection.Packets-1.8915060806311901� >� 0)� AND�
(+0.9999469760542993*Connection.Duration+0.0102978191799450*Connection.PSH_
dst_src-0.0678848187709065� >� 0)AND� (+0.9974120304999046*�
Connection.Duration-0.0718974367697309*Connection.PSH_dst_src+�
0.6218769870346778� >� 0)�
�
BKConectionNormal_N4=(-0.2660029503134025*Connection.Duration+�
0.9639722145500697*Connection.FIN_src_dst-0.1513078382144927� >� 0)� AND�
(� (+0.9934378934982687*Connection.Duration-0.1143728628728094*�
Connection.PSH_src_dst+0.9060659801972677� >� 0)AND� (-
0.6627664212686979*Connection.Duration-0.7488261953475471*�
Connection.PSH_src_dst+5.5152290587675612� >� 0)AND� NOT(-
0.9176616247245791*Connection.Duration+0.3973627341709909*Connection.PSH_sr
c_dst-0.3403521618557532� >� 0)�)� OR� ((+0.9934378934982687*�
Connection.Duration-0.1143728628728094*Connection.PSH_src_dst+�
0.9060659801972677� >� 0)AND� NOT(-0.6627664212686979*� Connection.Duration-�
0.7488261953475471*Connection.PSH_src_dst+� 5.5152290587675612� >� 0)AND� (-
0.9176616247245791*Connection.Duration+�
0.3973627341709909*Connection.PSH_src_dst-0.3403521618557532� >� 0))�
�
BKConectionNormal_N5=(+1666.6099790907281000*Connection.Packets+262.1039945
892520100*Connection.PSH_dst_src+231.3465640879086600*Connection.PSH_src_ds
t-22684.4403668937520000� >� 0)�
�
BKConectionNormal_N6=(-0.2057401826907004*Connection.Duration+�
0.3950037687846065*Connection.FIN_dst_src+0.3950037687846065*Connection.FIN
_src_dst+0.3841303265549015*Connection.SYN_dst_src+0.0372738357257134� >� 0)�
AND� (+0.0074761790042960*Connection.Duration+�
0.2615179611123543*Connection.FIN_dst_src+0.2615179611123543*Connection.FIN
_src_dst-0.2868432626062151*Connection.Status+� 0.2361926596184932�
*Connection.SYN_dst_src+0.0834705042691872� >� 0)�
�

 156

Search for predicates by use GK2 algorithm.
While analyzing data of training dataset, we determine the attributes having no variation (features)

to delete from dataset as non–informative
GK2 algorithm attributes:

• Maximal length of rules – 6 (total number of predicates forming conjunction in rule
premise);

• Coverage – 1.
Result: 5 rules:

BKConectionNormal_RN1=BKConectionNormal_N2�
BKConectionNormal_RN2=BKConectionNormal_N3�
BKConectionNormal_RN3=BKConectionNormal_N4�
BKConectionNormal_RN4=BKConectionNormal_N5�
BKConectionNormal_RN5=BKConectionNormal_N1�

Validation of the rules overall coverage (see Fig.A.0)
Coverage is equal to 79% for the cases of class Normal.

Two rules are selected for use in BKConectionNormal base classifier that are:
BKConectionNormal_RN1 and BKConectionNormal_RN4 .

Knowledge base of this classifier is as follows:
BKConectionNormal_RN1 OR BKConectionNormal_RN4 .

Fig.A.0.

 157

3. Training of the base classifier BKPacketsNormal

This base classifier deals with temporal data, each case corresponds to a connection and dataset is
broken up in to samples: Normal and Abnormal.

The average number of packets comprising different attacks is 4,68 and for connections of the class
Normal this length is 23,03.

The window used for analysis of connection status is 12 packets. According to the temporal data
mining and decision making algorithms used in this project the input sequence is predicted up to the
packet # 12. Just to remind, the algorithm is based of assessment of the value of discrepancy of input
sequences approximated via use of a statistical model of the Normal connections.

The results of simulation given in Fig.A1 shows some attributes of distribution of such discrepancy
for both Normal and Abnormal traffics given as a dependence from the number of the current packet
within 12-packets window.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1 2 3 4 5 6 7 8 9 10 11 12

De
lta

Min NormalAvg Avg NormalAvg Max NormalAvg
Min Not NormalAvg Avg Not NormalAvg Max Not NormalAvg

Histogram D NormalAvg
Step 3

0
20
40
60
80

100
120

0,0
08

84
75

24

0,0
39

51
89

43

0,0
70

19
03

61

0,1
00

86
17

79

0,1
31

53
31

97

0,1
62

20
46

15

0,1
92

87
60

33

0,2
23

54
74

51

0,2
54

21
88

69

0,2
84

89
02

87
More

Fr
eq

ue
nc

y

96,00%
96,50%
97,00%
97,50%
98,00%
98,50%
99,00%
99,50%
100,00%
100,50%

Frequency

Cumulative %

Fig.A1. Distribution of the discrepancy for both Normal and Abnormal traffics in time
(given as a dependence from the number of the current packet within 12-packets window)

Fig.A2. Histogram of discrepancies for the packet number 3

 158

Histogram D NormalAvg
Step 4

0
10
20
30
40
50
60
70
80
90

100

0,0
23

28
64

55

0,0
53

31
73

49

0,0
83

34
82

44

0,1
13

37
91

38

0,1
43

41
00

33

0,1
73

44
09

27

0,2
03

47
18

22

0,2
33

50
27

16

0,2
63

53
36

11

0,2
93

56
45

05
More

Fr
eq

ue
nc

y

,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

Frequency
Cumulative %

The histograms presenting distributions of the above discrepancy for different values of the packet
numbers (particularly, for packets of numbers 3, 4, 12) are given in Fig.A2, Fig.A3 and Fig.A4.

Histogram D NormalAvg
Step 12

0

5

10

15

20

25

30

35

0,0
53

04
69

31

0,0
65

97
51

32

0,0
78

90
33

32

0,0
91

83
15

32

0,1
04

75
97

33

0,1
17

68
79

33

0,1
30

61
61

33

0,1
43

54
43

34

0,1
56

47
25

34
More

Fr
eq

ue
nc

y

,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

Frequency
Cumulative %

3.1. Selection the threshold functions

Several variants of the base classifier's algorithm were computed based on use of different
threshold functions for each particular number of input packets within the chosen 12-packets window.
The threshold functions were computed automatically for different given values of coverage factor.
Each variant makes it possible to determine the probabilities comprising confusion matrix and that is
why to select the value of the threshold that meets given constraints to false positive and false negative.
Particularly, the following values of coverage factor for dataset of the class Normal were used in the
above search procedures:

BK_75 – threshold= 75%
BK_80 – threshold= 80%
BK_85 – threshold= 85%
BK_90 – threshold= 90%
BK_95 – threshold= 95%
BK_100 – threshold= 100%

Fig.A3. Histogram of discrepancies for the packet number 4

Fig.A4. Histogram of discrepancies for the packet number 12

 159

3.2. Assessment of the quality of performance of the base classifier given threshold function

The first sample which attributes are given in the Fig.A5 corresponds to the dataset of the class
Normal whereas the second one corresponds to the dataset of class Abnormal which don't includes the
cases of attack of type SYNFlood ("the length" of this attack is equal to 1 packet within a connection
and this packet is not discernable as compared with normal connection; such kind of attack cannot be
detected on the basis packet sequence it correspond to). The second sample (see Fig.A5) contains all
connections including those ones which correspond to SYNFlood attack).

The base classifier selected is that which possess the best quality for threshold= 95% (see Fig.A5).

4. Training of the base classifier BK_5sec_Normal

The training data found out such that it does not contain cases of attacks of classes SYNFlood and
PipeUpAdmin (these attacks are developing in time very rapidly and that is why, as a rule, at the time
of the 5 sec. interval end this kind of attack has already ended thus giving no information for making
decision at that time). Thus, dataset for training this base classifier include connections of the class
Normal and two types of attacks because the other attacks do not reveal themselves in such kind of
data.

Fig.A5.

 160

4.1. Analysis of datasets in the source NetLevel – Agreg5sec

Total number of cases – 224.

ID_ENTITY 224
Normal 112
Abnormal 112

Assignment of data for training of base classifier:

((Agreg5sec. ID_ENTITY)<=’21:27:54,516691’) AND Normal) OR ((Agreg5sec.ID_ENTITY <=
‘21:47:48,258865’) AND Abnormal)

Number of cases of the classes:
Normal - 56
Abnormal – 56

Assignment of data for testing of base classifier:
((Agreg5sec. ID_ENTITY)>’21:27:54,516691’) AND Normal) OR ((Agreg5sec.ID_ENTITY >
‘21:47:48,258865’) AND Abnormal)

Number of cases of the classes:
Normal - 56
Abnormal – 56

4.2. Extraction rules of class Normal

Search for additional predicates on the basis of VAM algorithm
Result: 7 predicates as follows:

�
BKAgreg5secNormal_N1=� (-0.6852682709941311*Agreg5sec_count_dest-
0.7282907364292875*Agreg5sec_count_serv_dest+3.6823386836223091� >� 0)� AND�
(-0.5343733474352195*Agreg5sec_count_src-
0.8369532371383244*Agreg5sec_count_dest-
0.0604681322555463*Agreg5sec_count_serv_dest+2.2797493137921476� >� 0)�

BKAgreg5secNormal_N2=(-
0.9433238313802486*Agreg5sec_count_src+0.3318736945738371*Agreg5sec_count
_dest+1.6569773535293761� >� 0)AND�
(+0.4436340405383322*Agreg5sec_count_src-
0.8962080328113743*Agreg5sec_count_dest+2.5614289435551139� >� 0)�
�
BKAgreg5secNormal_N3=� (-0.6201867455880064*Agreg5sec_count_dest-
0.7844542055448218*Agreg5sec_count_serv_src+3.5582341021334010� >� 0)

BKAgreg5secNormal_N4=� (-0.6547940947872492*Agreg5sec_count_src-
0.7558073123698573*Agreg5sec_count_serv_dest+3.1337185444345641� >� 0)�
�
BKAgreg5secNormal_N5=� (-0.2523670376261696*Agreg5sec_count_src-
0.9676315819152408*Agreg5sec_count_serv_src+1.7864319565607989� >� 0)�
�
BKAgreg5secNormal_N6=� (-0.5343733474352195*Agreg5sec_count_src-
0.8369532371383244*Agreg5sec_count_dest-
0.0604681322555463*Agreg5sec_count_serv_dest+2.2797493137921476� >� 0)�
�
BKAgreg5secNormal_N7=� (-47.4270890788748010*Agreg5sec_count_src-
46.8011669194704820*Agreg5sec_count_dest-
49.1082675468836240*Agreg5sec_count_serv_dest+470.5431037702243200� >� 0)�

Extraction rules via use of GK2 algorithm:

 161

While analyzing data of training dataset, we determine the attributes having no variation (features)
to delete from dataset as non–informative.

GK2 algorithm attributes:
• Maximal "length" of the rules– 7 (total number of predicates connected by conjunction in

premise);
• Coverage – 1

Result: 6 rules:
BKAgreg5secNormal_RN1=BKAgreg5secNormal_N6�
BKAgreg5secNormal_RN2=BKAgreg5secNormal_N1�
BKAgreg5secNormal_RN3=BKAgreg5secNormal_N2� AND� BKAgreg5secNormal_N7�
BKAgreg5secNormal_RN4=BKAgreg5secNormal_N2� AND� BKAgreg5secNormal_N4�
BKAgreg5secNormal_RN5=BKAgreg5secNormal_N2� AND� BKAgreg5secNormal_N3�
BKAgreg5secNormal_RN6=BKAgreg5secNormal_N2� AND� BKAgreg5secNormal_N5�

Assessment of the quality of the rules extracted
The total coverage factor for all rules extracted for dataset of the class Normal – 100% (see Fig.A6

for details).

�
�

�

The best rule in respect to testing dataset (it is selected as the base classifier rule):
BK Agreg5secNormal_RN4.

Fig.A6

 162

5. Training of the base classifier BK NetLevel – Agreg100con

This data source is computed on the basis of all the cases of Normal and Abnormal connections but
some anomalies do not reveal themselves (non-discernable with Normal class connections) in it.

5.1. Analysis of datasets in the source NetLevel –Agreg100con.

Total number of the cases – 332.

ID_ENTITY 332
Normal 15
Abnormal 317

Because of limited number of cases of the class Normal, all the cases are used both in training and

testing procedures.
Conditions for selection of training data:

(Normal) OR ((Agreg100con.ID_ENTITY <= ‘21:48:23,480853’) AND Abnormal)
 OR ((Agreg100con.ID_ENTITY >= ‘22:01:34,845119’) AND Abnormal)

Number of cases of the classes:
Normal - 15
Abnormal – 156

Assignment of data for testing of base classifier:
 (Normal) OR (((Agreg5sec.ID_ENTITY > ‘21:48:23,480853’) AND Abnormal) AND
((Agreg5sec.ID_ENTITY < ‘21:47:48,258865’) AND Abnormal))

Number of cases of the classes:
Normal - 15
Abnormal – 161

5.2. Extraction rules of class l Normal

Search for additional predicates on the basis of VAM algorithm
Result: 6 rules (predicates) as follows:

BKAgreg100conNormal_N1=� (� (-1.0*Agreg100con_count_dest+�
85.6672250771610920� >� 0)AND� NOT(-0.9999978565374079*�
Agreg100con_count_dest-0.0020704880076024*�
Agreg100con_count_serv_dest1+82.6828606139623760� >� 0)AND�
NOT(+0.8660540915078701*Agreg100con_count_dest-0.4999503081131942*�
Agreg100con_count_serv_dest1-39.8995280219891410� >� 0)AND�
(+0.6702207833765178*Agreg100con_count_dest+0.7421617758482088*Agreg100con
_count_serv_dest1-69.5947824793456110� >� 0)�)� OR� (� (-
1.0*Agreg100con_count_dest� +85.6672250771610920� >� 0)AND� NOT(-
0.9999978565374079*Agreg100con_count_dest-0.0020704880076024*�
Agreg100con_count_serv_dest1+82.6828606139623760� >� 0)AND�
(+0.8660540915078701*Agreg100con_count_dest-0.4999503081131942*�
Agreg100con_count_serv_dest1-39.8995280219891410� >� 0)AND�
NOT(+0.6702207833765178*Agreg100con_count_dest+0.7421617758482088*Agreg100
con_count_serv_dest1-69.5947824793456110� >� 0)�)� OR� ((NOT� (� (-
1.0*Agreg100con_count_dest+85.6672250771610920� >� 0)AND� NOT(-
0.9999978565374079*Agreg100con_count_dest-
0.0020704880076024*Agreg100con_count_serv_dest1+82.6828606139623760� >�
0)AND� NOT(+0.8660540915078701*Agreg100con_count_dest-
0.4999503081131942*Agreg100con_count_serv_dest1-39.8995280219891410� >�
0)AND� (+0.6702207833765178*Agreg100con_count_dest+�
0.7421617758482088*Agreg100con_count_serv_dest1-69.5947824793456110� >� 0)�)
� OR� (� (-1.0*Agreg100con_count_dest� +85.6672250771610920� >� 0)AND� NOT(-

 163

0.9999978565374079*Agreg100con_count_dest-
0.0020704880076024*Agreg100con_count_serv_dest1+82.6828606139623760� >�
0)AND� (+0.8660540915078701*Agreg100con_count_dest-
0.4999503081131942*Agreg100con_count_serv_dest1-39.8995280219891410� >�
0)AND� NOT(+0.6702207833765178*Agreg100con_count_dest+�
0.7421617758482088*Agreg100con_count_serv_dest1-69.5947824793456110� >�
0)�))� AND� (+0.9997062945178824*Agreg100con_count_dest+�
0.0242347828817369*Agreg100con_Duration-29.8661040827249590� >� 0)AND� (-
0.9697592558278408*Agreg100con_count_dest+�
0.2440634871016806*Agreg100con_Duration-138.5638718097152700� >� 0))�

BKAgreg100conNormal_N2=(-0.5074448557840566*�
Agreg100con_count_serv_dest1+0.8616842335439925*Agreg100con_Duration-
540.1887797977055900� >� 0)

BKAgreg100conNormal_N3=(+0.9911934594955068*Agreg100con_count_dest+0.13242
17725803773*Agreg100con_Duration-101.2728549212984600� >� 0)AND� (-
0.9986189191765833*Agreg100con_count_dest+0.0525381219933927�
*Agreg100con_Duration+49.8709414482802980� >� 0)AND�
(+0.1187457411991160*Agreg100con_count_dest+0.9929246944995741*Agreg100con
_Duration-578.4997239314012600� >� 0)

BKAgreg100conNormal_N4=(+0.5481350872495229*Agreg100con_count_src-
0.8363898170864814*Agreg100con_count_dest+50.1172271637927270� >� 0)AND� (-
0.7140075159528438*Agreg100con_count_src-
0.7001380343638313*Agreg100con_count_dest+94.1250796631528740� >� 0)AND�
NOT(-0.0080065900516841*Agreg100con_count_src-
0.9999679467441665*Agreg100con_count_dest+83.7628284144334430� >� 0)�
�
BKAgreg100conNormal_N5=(+0.4142582308379404*Agreg100con_count_serv_src1+0.
9101593916358935*Agreg100con_Duration-593.9597276776623900� >� 0)AND� (-
0.5548301631005419*� Agreg100con_count_serv_src1+�
0.8319636350909972*Agreg100con_Duration-527.2686026260485100� >� 0)�
�
BKAgreg100conNormal_N6=(� (+0.5844387466391736*Agreg100con_count_src-
0.8114378296744809*Agreg100con_count_serv_dest1+25.9735995501971500� >�
0)AND� (-0.9959752854657177*Agreg100con_count_src-
0.0896282920816968*Agreg100con_count_serv_dest1+50.6194808068264380� >�
0)AND� NOT(-0.3846057289944088*Agreg100con_count_src�
+0.9230809461930624*Agreg100con_count_serv_dest1-2.6532537564522283� >�
0)AND� (+0.9986096161275863*Agreg100con_count_src-
0.0527146523986899*Agreg100con_count_serv_dest1-34.7089776722383410� >� 0))�
OR� (� NOT(+0.5844387466391736*Agreg100con_count_src-
0.8114378296744809*Agreg100con_count_serv_dest1+25.9735995501971500� >�
0)AND� NOT(-0.9959752854657177*Agreg100con_count_src-
0.0896282920816968*Agreg100con_count_serv_dest1+50.6194808068264380� >�
0)AND� (-0.3846057289944088*Agreg100con_count_src+�
0.9230809461930624*Agreg100con_count_serv_dest1-2.6532537564522283� >� 0)AND�
(+0.9986096161275863*Agreg100con_count_src-
0.0527146523986899*Agreg100con_count_serv_dest1-34.7089776722383410� >� 0)�)�

�
Search for rules on the basis of GK2 algorithm

While analyzing data of training dataset, we determine the attributes having no variation (features)
to delete from dataset as non–informative.

Attributes:
• Maximal "length" of the rules– 7 (total number of predicates connected by conjunction in

premise);
• Coverage – 1

 164

Result: 9 rules as follows:
BKAgreg100conNormal_RN1=BKAgreg100conNormal_N1� AND�
BKAgreg100conNormal_N2�
BKAgreg100conNormal_RN2=BKAgreg100conNormal_N1� AND�
BKAgreg100conNormal_N3�
BKAgreg100conNormal_RN3=BKAgreg100conNormal_N1� AND�
BKAgreg100conNormal_N5�
BKAgreg100conNormal_RN4=BKAgreg100conNormal_N2� AND�
BKAgreg100conNormal_N4�
BKAgreg100conNormal_RN5=BKAgreg100conNormal_N3� AND�
BKAgreg100conNormal_N4�
BKAgreg100conNormal_RN6=BKAgreg100conNormal_N1� AND�
BKAgreg100conNormal_N4�
BKAgreg100conNormal_RN7=BKAgreg100conNormal_N4� AND�
BKAgreg100conNormal_N5�
BKAgreg100conNormal_RN8=BKAgreg100conNormal_N6�
BKAgreg100conNormal_RN9=NOT� BKAgreg100conNormal_N2� AND�
BKAgreg100conNormal_N3�

�

�
�

�

Assessment of the quality of the rules extracted
The total coverage factor for all rules extracted for dataset of the class Normal – 100% (see Fig.A7).
The basis rule selected as the best one:

BKAgreg100conNormal_RN3

Fig.A7

 165

6. Training of meta-classifier of the Network-based level

Training procedure for meta-classifier of the Network-based level is started for the class Abnormal.
While forming the meta-data, 3 additional features measured in logical scale containing

information about type of an event initialized decision making procedure are added, in particular, they
are as follows:

- InitConn – decision has to be made due to connection completion.
- Init5sec – decision has to be made due to completion of the 5-second interval;
- Init100conn – decision has to be made due to completion of the interval containing 100

connections.

6.1. Analysis of meta-data of the Network-based data source

Total number of cases used for computing meta-data – 2085.

ID_ENTITY 2085
Normal 1563
Abnormal 522

Break up of data into training and testing
Training data set:
Total number 1296 cases, between them:

Normal - 1034
Abnormal – 262

6.2. Training of the meta– classifier MCNormal (Meta-classifier of the Network-based data
source)

Search for rules on the basis of GK2 algorithm
While analyzing data of training dataset, we determine the attributes having no variation (features)

to delete from dataset as non–informative.
Attributes:

• Maximal "length" of the rules– 7 (total number of predicates connected by conjunction in
premise);

• Coverage – 1
The result: 18 rules given below:

MCNormal_RN1� =� BK_ConnAgreg� AND� BK_Agreg5sec� AND� NOT� Init100conn�
MCNormal_RN2� =� BK_ConnPacket� AND� BK_Agreg5sec� AND� NOT� Init100conn�
MCNormal_RN3� =� BK_ConnAgreg� AND� BK_Agreg5sec� AND� InitConn�
MCNormal_RN4� =� BK_ConnPacket� AND� BK_Agreg5sec� AND� InitConn�
MCNormal_RN5� =� BK_ConnPacket� AND� � NOT� BK_ConnAgreg� AND� BK_Agreg5sec�
MCNormal_RN6� =� � NOT� BK_ConnPacket� AND� BK_ConnAgreg� AND� BK_Agreg5sec�
MCNormal_RN7� =� BK_Agreg100con� AND� Init5sec�
MCNormal_RN8� =� BK_ConnAgreg� AND� BK_Agreg100con�
MCNormal_RN9� =� BK_Agreg100con� AND� NOT� InitConn�
MCNormal_RN10� =� BK_ConnPacket� AND� BK_Agreg100con�
MCNormal_RN11� =� BK_ConnAgreg� AND� Init5sec�
MCNormal_RN12� =� BK_ConnPacket� AND� BK_Agreg5sec� AND� Init5sec�
MCNormal_RN13� =� BK_ConnAgreg� AND� NOT� InitConn� AND� NOT� Init100conn�
MCNormal_RN14� =� BK_Agreg100con� AND� Init100conn�
MCNormal_RN15� =� NOT� BK_ConnPacket� AND� NOT� BK_Agreg5sec� AND� Init5sec�
MCNormal_RN16� =� NOT� BK_ConnPacket� AND� NOT� BK_Agreg5sec� AND� NOT� InitConn�
MCNormal_RN17� =� BK_ConnAgreg� AND� NOT� BK_Agreg5sec� AND� NOT� InitConn�
MCNormal_RN18� =� NOT� BK_ConnPacket� AND� BK_ConnAgreg� AND� NOT� InitConn�

�
�

 166

Assessment of the quality of the rules extracted
The total coverage factor for all rules extracted for dataset of the class Normal – 98% (see Fig.A8

for details).
The basis rule selected as the best ones assigned coverage factors are as follows:

MCNormal_RN1� –� 66%�
MCNormal_RN2� –� 76%�
MCNormal_RN3� –� 65%�
MCNormal_RN4� –� 75%�

Total coverage of the training data set – 78%
Total coverage of the testing data set 98%

The resulting meta-classification rule is as follows:

MCNormal: MCNormal_RN1 OR MCNormal_RN2 OR
MCNormal_RN3 OR MCNormal_RN4

Let us assess the increase of quality provided by use of meta-classifier as compared with the best
base classifier. The best base classifier provides 73% classification quality for the cases of the training
dataset and 83% – for the cases of the testing dataset (see Fig.A9).

At the same time, the developed meta-classifier provides 81% classification quality for the cases of
the training dataset and 98% – for the cases of the testing dataset.

Meta-classifier uses the following base classifiers of the Network-based level:
- BK_ConnAgreg;
- BK_ConnPacket;
- BK_Agreg5sec.

Fig.A.8

 167

 Fig. A.9

 168

Appendix B. Data Sources of OS and Application Level

1. Learning detection of FTPCrack attack

Training and testing dataset used for learning are structured in the same way as dataset of the
network-based level considered above in the Appendix A. The sequence of activities is also the same
as previously described in Appendix A. This is the reason why the procedures below are described
very briefly.

1.1. Learning of classification on the basis of temporal data (sequences of headers of packets)

Length of the sliding window is equal to 4 packets. Here it is also used a multi-dimensional
regression for prognosis of the packets' fields on the basis of information has already been received.

The model for assessment of the discrepancy between sequences of packet headers received and
those corresponding model of traffic for FTPCrack attack is built. Histograms corresponding to
distribution of discrepancy dependent of the number of input packet are computed.

1.2. Assessment of the quality of base classifier for different values of discrepancy threshold

Several variants of the base classifier's algorithm were computed based on use of different
threshold functions for each particular number of input packets within the chosen 4-packets window.
The threshold functions were computed automatically for different given values of coverage factor.
Each a variant makes it possible to determine the probabilities comprising confusion matrix and that is
why to select the value of the threshold that meets given constraints to false positive and false negative.
Particularly, the following values of coverage factor for dataset of the class Normal were used in the
above search procedures:

FTPBC_75 – threshold 75%
FTPBC_80 – threshold 80%
FTPBC_85 – threshold 85%
FTPBC_90 – threshold 90%
FTPBC_95 – threshold 95%
FTPBC_100 – threshold 100%

The result of selection is base classifier corresponding to the coverage threshold equal to 85% (see
Fig. B1).

 169

The coverage factor of this classifier is equal to 96%.

2. Training of the base classifier FTPBC_Agreg5sec

While analyzing data of training dataset, we determine the attribute having no variation (features)
to delete from dataset as non–informative that is here "hots".

2.1. Learning of classification on the basis of temporal data (sequences of headers of packets)

It consists of search for additional predicates on the basis of VAM algorithm for the subspace
"failed logins"–"successful_logins"
The result is as follows:

BCFTP_FTPCrackAgreg5sec= (+0.9674332962268508*failed_logins-
0.2531260898280744*successful_logins-0.8269450936460111� >� 0)�

Due to small dimensionality of this space this predicate is single and it is used as the premise of the
respective classification rule.

2.2. Assessment of the quality of base classifier

The value of the coverage factor for this rule intended for detection of FTPCrack attack is equal to
100%.

The resulting probability of correct classification for this classifier (FTPBC_Agreg5sec)
corresponds to 89% for training dataset and 100% for testing one (see Fig.B.2).

Fig.B.1

 170

3. Training of the base classifier FTPBC_Agreg30con

This classifier makes decisions on the basis of an aggregation of the input information of the length
30 connections.

3.1. Dataset analysis

Total number of the instances – 49

ID_ENTITY 49
FTPCrack 16
Other 33

3.2. Extraction rules of class l: FTPCrack

Search for additional predicates on the basis of VAM algorithm. It results in extraction of 2
predicates:

FTP_A30_FTPCrack1=(0.9990071650342662� *� failed_logins� +0.04454979472� *�
Duration-28.9938983637157080>0)� AND� (0.9999994775514343*� failed_logins+�
0.0010222019656996*Duration� -1.4399535579769640� >� 0)�
�

Fig.B.2

 171

FTP_A30_FTPCrack2=(-0.9990125210414768*successful_logins� +0.044429526�
Duration+1.0262718031633660� >0)AND� (-0.9999995594442007�
successful_logins+0.0009386753456492*� Duration+28.7101899404217950� >� 0)�
These predicates are used as the premises for the rules.

3.3. Assessment of the quality of the rules extracted

The total value of the coverage factor for these rules used for classification of the FTPCrack
attacks is equal to 100%.

�

The base rule of the classifier FTPBC_Agreg30con intended for detection of FTPCrack attack is
the rule FTP_A30_FTPCrack1.�
�
�

4. Training of the meta–classifier for detection of FTPCrack in the application level

4.1. Dataset analysis

While forming the meta-data, 3 extra features measured in logical scale containing information
about type of an event initialized decision making procedure are added, in particular, they are as
follows:

 -InitConn – decision making procedure is initiated by event "end of connection";
- Init5sec - decision making procedure is initiated by event "end of 5 second interval":
- Init30conn – decision making procedure is initiated by event "end of 30 connection length

interval".
The total number of instances in meta–dataset is equal to 275.

ID_ENTITY 275

Fig.B.3

 172

FTPCrack 80
other 195

Breaking up the meta–dataset into training and testing ones:

Training dataset contains 137 instances, at that, distribution of classes:
of class FTPCrack - 40
other – 97

4.2. Extraction rules of class l: FTPCrack forming meta– classifier FTPMC_FTPCrack

Search for rules on the basis of GK2 algorithm
While analyzing data of training dataset, we determine the attributes having no variation (features)

to delete from dataset as non–informative.

Rule's attributes:
• Maximal length of rules – 6 (the total number of predicates forming conjunction in rule

premise)
• Coverage factor – 1

The result: 4 rules as follows:

MCFTPCrack_RN1� =� FTPBC_Packets�
MCFTPCrack_RN2� =� FTPBC_Agreg5sec� AND� InitConn�
MCFTPCrack_RN3� =� FTPBC_Agreg5sec� AND� � NOT� Init5sec�
MCFTPCrack_RN4� =� FTPBC_Agreg5sec� AND� Init30conn�

�
The total coverage factor of these rules intended for detection of FTPCrack attack is equal to 98%.
The selected rules are those which provide the maximal coverage it both training and testing

datasets:

Fig.B.4

 173

MCFTPCrack_RN1� –� 87%�
MCFTPCrack_RN4� –� 76%�

�

4.3. Assessment of the quality of the rules extracted

Coverage over training dataset – 98%
Coverage over testing dataset – 100%

The final rule according to which meta–classifier detects FTPCrack attack:
MCFTPCrack:� MCFTPCrack_RN1� OR� MCFTPCrack_RN4�

Let us assess the quality of this meta-classifier as compared with the quality provided by particular
base classifiers. The best base classifier provides the correct decision in 87% of cases over training
dataset and in 95% over testing one. The designed meta-classifier provides 87% and 100% respectively
having the value of coverage factor equal to 98%.

Figure B.5

